Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

O-GlcNAc modification blocks the aggregation and toxicity of the protein α-synuclein associated with Parkinson's disease

Abstract

Several aggregation-prone proteins associated with neurodegenerative diseases can be modified by O-linked N-acetyl-glucosamine (O-GlcNAc) in vivo. One of these proteins, α-synuclein, is a toxic aggregating protein associated with synucleinopathies, including Parkinson's disease. However, the effect of O-GlcNAcylation on α-synuclein is not clear. Here, we use synthetic protein chemistry to generate both unmodified α-synuclein and α-synuclein bearing a site-specific O-GlcNAc modification at the physiologically relevant threonine residue 72. We show that this single modification has a notable and substoichiometric inhibitory effect on α-synuclein aggregation, while not affecting the membrane binding or bending properties of α-synuclein. O-GlcNAcylation is also shown to affect the phosphorylation of α-synuclein in vitro and block the toxicity of α-synuclein that was exogenously added to cells in culture. These results suggest that increasing O-GlcNAcylation may slow the progression of synucleinopathies and further support a general function for O-GlcNAc in preventing protein aggregation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: O-GlcNAc modification and α-synuclein.
Figure 2: Semisynthesis of α-synuclein.
Figure 3: O-GlcNAcylation blocks α-synuclein aggregation.
Figure 4: O-GlcNAcylation has no effect on α-synuclein membrane binding or bending.
Figure 5: O-GlcNAcylation blocks α-synuclein toxicity.
Figure 6: O-GlcNAcylated α-synuclein is largely excluded from the protein aggregates.

Similar content being viewed by others

References

  1. Hardivillé, S. & Hart, G. W. Nutrient regulation of signaling, transcription, and cell physiology by O-GlcNAcylation. Cell Metab. 20, 208–213 (2014).

    Article  Google Scholar 

  2. Bond, M. R. & Hanover, J. A. A little sugar goes a long way: the cell biology of O-GlcNAc. J. Cell Biol. 208, 869–880 (2015).

    Article  CAS  Google Scholar 

  3. Yuzwa, S. A. & Vocadlo, D. J. O-GlcNAc and neurodegeneration: biochemical mechanisms and potential roles in Alzheimer's disease and beyond. Chem. Soc. Rev. 43, 6839–6858 (2014).

    Article  CAS  Google Scholar 

  4. Zhu, Y., Shan, X., Yuzwa, S. A. & Vocadlo, D. J. The emerging link between O-GlcNAc and Alzheimer disease. J. Biol. Chem. 289, 34472–34481 (2014).

    Article  Google Scholar 

  5. O'Donnell, N., Zachara, N. E., Hart, G. W. & Marth, J. D. OGT-dependent X-chromosome-linked protein glycosylation is a requisite modification in somatic cell function and embryo viability. Mol. Cell. Biol. 24, 1680–1690 (2004).

    Article  CAS  Google Scholar 

  6. Lefebvre, T. et al. Evidence of a balance between phosphorylation and O-GlcNAc glycosylation of Tau proteins—a role in nuclear localization. Biochim. Biophys. Acta 1619, 167–176 (2003).

    Article  CAS  Google Scholar 

  7. Liu, F., Iqbal, K., Grundke-Iqbal, I., Hart, G. & Gong, C. O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer's disease. Proc. Natl Acad. Sci. USA 101, 10804–10809 (2004).

    Article  CAS  Google Scholar 

  8. Wang, Z. et al. Enrichment and site mapping of O-linked N-acetylglucosamine by a combination of chemical/enzymatic tagging, photochemical cleavage, and electron transfer dissociation mass spectrometry. Mol. Cell. Proteom. 9, 153–160 (2010).

    Article  CAS  Google Scholar 

  9. Alfaro, J. F. et al. Tandem mass spectrometry identifies many mouse brain O-GlcNAcylated proteins including EGF domain-specific O-GlcNAc transferase targets. Proc. Natl Acad. Sci. USA 109, 7280–7285 (2012).

    Article  CAS  Google Scholar 

  10. Yuzwa, S. A. et al. A potent mechanism-inspired O-GlcNAcase inhibitor that blocks phosphorylation of tau in vivo. Nature Chem. Biol. 4, 483–490 (2008).

    Article  CAS  Google Scholar 

  11. Yuzwa, S. A. et al. Increasing O-GlcNAc slows neurodegeneration and stabilizes tau against aggregation. Nature Chem. Biol. 8, 393–399 (2012).

    Article  CAS  Google Scholar 

  12. Martí, M. J., Tolosa, E. & Campdelacreu, J. Clinical overview of the synucleinopathies. Mov. Disord. 18 (Suppl. 6), S21–S27 (2003).

    Article  Google Scholar 

  13. Lashuel, H. A., Overk, C. R., Oueslati, A. & Masliah, E. The many faces of α-synuclein: from structure and toxicity to therapeutic target. Nature Rev. Neurosci. 14, 38–48 (2013).

    Article  CAS  Google Scholar 

  14. Emanuele, M. & Chieregatti, E. Mechanisms of alpha-synuclein action on neurotransmission: cell-autonomous and non-cell autonomous role. Biomolecules 5, 865–892 (2015).

    Article  CAS  Google Scholar 

  15. Fink, A. L. The aggregation and fibrillation of α-synuclein. Acc. Chem. Res. 39, 628–634 (2006).

    Article  CAS  Google Scholar 

  16. George, S., Rey, N. L., Reichenbach, N., Steiner, J. A. & Brundin, P. α-Synuclein: the long distance runner. Brain Pathol. 23, 350–357 (2013).

    Article  CAS  Google Scholar 

  17. Recasens, A. & Dehay, B. Alpha-synuclein spreading in Parkinson's disease. Front. Neuroanat. 8, 159 (2014).

    Article  Google Scholar 

  18. Brettschneider, J., Tredici, K. D., Lee, V. M.-Y. & Trojanowski, J. Q. Spreading of pathology in neurodegenerative diseases: a focus on human studies. Nature Rev. Neurosci. 16, 109–120 (2015).

    Article  CAS  Google Scholar 

  19. Wang, Z. et al. Site-specific GlcNAcylation of human erythrocyte proteins potential biomarker(s) for diabetes. Diabetes 58, 309–317 (2009).

    Article  CAS  Google Scholar 

  20. Marotta, N. P., Cherwien, C. A., Abeywardana, T. & Pratt, M. R. O-GlcNAc modification prevents peptide-dependent acceleration of α-synuclein aggregation. ChemBioChem 13, 2665–2670 (2012).

    Article  CAS  Google Scholar 

  21. Yuzwa, S. A. et al. Mapping O-GlcNAc modification sites on tau and generation of a site-specific O-GlcNAc tau antibody. Amino Acids 40, 857–868 (2011).

    Article  CAS  Google Scholar 

  22. Cheung, W. D., Sakabe, K., Housley, M. P., Dias, W. B. & Hart, G. W. O-linked beta-N-acetylglucosaminyltransferase substrate specificity is regulated by myosin phosphatase targeting and other interacting proteins. J. Biol. Chem. 283, 33935–33941 (2008).

    Article  CAS  Google Scholar 

  23. Oueslati, A., Fournier, M. & Lashuel, H. A. Role of post-translational modifications in modulating the structure, function and toxicity of alpha-synuclein: implications for Parkinson's disease pathogenesis and therapies. Prog. Brain Res. 183, 115–145 (2010).

    Article  CAS  Google Scholar 

  24. Koo, H.-J., Choi, M. Y. & Im, H. Aggregation-defective alpha-synuclein mutants inhibit the fibrillation of Parkinson's disease-linked alpha-synuclein variants. Biochem. Biophys. Res. Commun. 386, 165–169 (2009).

    Article  CAS  Google Scholar 

  25. Coelho-Cerqueira, E., Pinheiro, A. S. & Follmer, C. Pitfalls associated with the use of Thioflavin-T to monitor anti-fibrillogenic activity. Bioorg. Med. Chem. Lett. 24, 3194–3198 (2014).

    Article  CAS  Google Scholar 

  26. Blanco-Canosa, J. B. & Dawson, P. E. An efficient Fmoc-SPPS approach for the generation of thioester peptide precursors for use in native chemical ligation. Angew. Chem. Int. Ed. 47, 6851–6855 (2008).

    Article  CAS  Google Scholar 

  27. Lorenzen, N. et al. The role of stable α-synuclein oligomers in the molecular events underlying amyloid formation. J. Am. Chem. Soc. 136, 3859–3868 (2014).

    Article  CAS  Google Scholar 

  28. Paslawski, W. et al. High stability and cooperative unfolding of α-synuclein oligomers. Biochemistry 53, 6252–6263 (2014).

    Article  CAS  Google Scholar 

  29. Jao, C. C., Hegde, B. G., Chen, J., Haworth, I. S. & Langen, R. Structure of membrane-bound alpha-synuclein from site-directed spin labeling and computational refinement. Proc. Natl Acad. Sci. USA 105, 19666–19671 (2008).

    Article  CAS  Google Scholar 

  30. Varkey, J. et al. Membrane curvature induction and tubulation are common features of synucleins and apolipoproteins. J. Biol. Chem. 285, 32486–32493 (2010).

    Article  CAS  Google Scholar 

  31. Mizuno, N. et al. Remodeling of lipid vesicles into cylindrical micelles by α-synuclein in an extended α-helical conformation. J. Biol. Chem. 287, 29301–29311 (2012).

    Article  CAS  Google Scholar 

  32. Boassa, D. et al. Mapping the subcellular distribution of α-synuclein in neurons using genetically encoded probes for correlated light and electron microscopy: implications for Parkinson's disease pathogenesis. J. Neurosci. 33, 2605–2615 (2013).

    Article  CAS  Google Scholar 

  33. Vargas, K. J. et al. Synucleins regulate the kinetics of synaptic vesicle endocytosis. J. Neurosci. 34, 9364–9376 (2014).

    Article  Google Scholar 

  34. Paleologou, K. E. et al. Phosphorylation at Ser-129 but not the phosphomimics S129E/D inhibits the fibrillation of alpha-synuclein. J. Biol. Chem. 283, 16895–16905 (2008).

    Article  CAS  Google Scholar 

  35. Paleologou, K. E. et al. Phosphorylation at S87 is enhanced in synucleinopathies, inhibits alpha-synuclein oligomerization, and influences synuclein-membrane interactions. J. Neurosci. 30, 3184–3198 (2010).

    Article  CAS  Google Scholar 

  36. Mbefo, M. K. et al. Phosphorylation of synucleins by members of the Polo-like kinase family. J. Biol. Chem. 285, 2807–2822 (2010).

    Article  CAS  Google Scholar 

  37. Oueslati, A., Schneider, B. L., Aebischer, P. & Lashuel, H. A. Polo-like kinase 2 regulates selective autophagic α-synuclein clearance and suppresses its toxicity in vivo. Proc. Natl Acad. Sci. USA 110, E3945–E3954 (2013).

    Article  CAS  Google Scholar 

  38. Tabrizi, S. J. et al. Expression of mutant alpha-synuclein causes increased susceptibility to dopamine toxicity. Hum. Mol. Genet. 9, 2683–2689 (2000).

    Article  CAS  Google Scholar 

  39. Lee, M., Hyun, D., Halliwell, B. & Jenner, P. Effect of the overexpression of wild-type or mutant alpha-synuclein on cell susceptibility to insult. J. Neurochem. 76, 998–1009 (2001).

    Article  CAS  Google Scholar 

  40. Ko, L.-W., Ko, H.-H. C., Lin, W.-L., Kulathingal, J. G. & Yen, S.-H. C. Aggregates assembled from overexpression of wild-type alpha-synuclein are not toxic to human neuronal cells. J. Neuropathol. Exp. Neurol. 67, 1084–1096 (2008).

    Article  CAS  Google Scholar 

  41. Khalaf, O. et al. The H50Q mutation enhances α-synuclein aggregation, secretion, and toxicity. J. Biol. Chem. 289, 21856–21876 (2014).

    Article  CAS  Google Scholar 

  42. Olanow, C. W. & Brundin, P. Parkinson's disease and alpha synuclein: is Parkinson's disease a prion-like disorder? Mov. Disord. 28, 31–40 (2013).

    Article  CAS  Google Scholar 

  43. Chen, M., Margittai, M., Chen, J. & Langen, R. Investigation of alpha-synuclein fibril structure by site-directed spin labeling. J. Biol. Chem. 282, 24970–24979 (2007).

    Article  CAS  Google Scholar 

  44. Vilar, M. et al. The fold of alpha-synuclein fibrils. Proc. Natl Acad. Sci. USA 105, 8637–8642 (2008).

    Article  CAS  Google Scholar 

  45. Gambetta, M. C. & Müller, J. O-GlcNAcylation prevents aggregation of the Polycomb group repressor polyhomeotic. Dev. Cell 31, 629–639 (2014).

    Article  CAS  Google Scholar 

  46. Hejjaoui, M., Haj-Yahya, M., Kumar, K. S. A., Brik, A. & Lashuel, H. A. Towards elucidation of the role of ubiquitination in the pathogenesis of Parkinson's disease with semisynthetic ubiquitinated α-synuclein. Angew. Chem. Int. Ed. 50, 405–409 (2011).

    Article  CAS  Google Scholar 

  47. Haj-Yahya, M. et al. Synthetic polyubiquitinated α-synuclein reveals important insights into the roles of the ubiquitin chain in regulating its pathophysiology. Proc. Natl Acad. Sci. USA 110, 17726–17731 (2013).

    Article  CAS  Google Scholar 

  48. Hejjaoui, M. et al. Elucidating the role of C-terminal post-translational modifications using protein semisynthesis strategies: α-synuclein phosphorylation at tyrosine 125. J. Am. Chem. Soc. 134, 5196–5210 (2012).

    Article  CAS  Google Scholar 

  49. Fauvet, B. et al. Characterization of semisynthetic and naturally Nα-acetylated α-synuclein in vitro and in intact cells: implications for aggregation and cellular properties of α-synuclein. J. Biol. Chem. 287, 28243–28262 (2012).

    Article  CAS  Google Scholar 

  50. Burai, R., Ait-Bouziad, N., Chiki, A. & Lashuel, H. A. Elucidating the role of site-specific nitration of α-synuclein in the pathogenesis of Parkinson's disease via protein semisynthesis and mutagenesis. J. Am. Chem. Soc. 137, 5041–5052 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

B.W.Z. is a fellow of the National Science Foundation Graduate Research Fellowship Program (DGE-0937362). This research was supported by the Michael J. Fox Foundation (M.R.P.), the National Institutes of Health (R01GM063915 to R.L. and R01NS081678 to D.B.A.) and in part by the US National Cancer Institute of the US National Institutes of Health (CCSG P30CA014089). Some circular dichroism and dynamic light scattering measurement were performed at the USC Nano Biophysics Core Facility. TEM of protein fibres was performed at the USC Center for Electron Microscopy and Microanalysis.

Author information

Authors and Affiliations

Authors

Contributions

N.P.M., Y.H.L., Y.E.L., M.R.A., B.W.Z., M.R., D.B.A., R.L. and M.R.P. designed experiments and interpreted data. N.P.M. carried out the synthesis of the synuclein proteins, performed aggregation reactions and collected circular dichroism and dynamic light scattering spectroscopy data, ThT measurements and TEM images. Y.H.L. performed cell-death assays. Y.E.L. performed mutant synuclein experiments. M.R.A. performed membrane-binding experiments. B.W.Z. performed SDS–PAGE analysis. M.R. collected primary neurons. N.P.M., Y.H.L., Y.E.L. and M.R.P. prepared the manuscript.

Corresponding author

Correspondence to Matthew R. Pratt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2799 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marotta, N., Lin, Y., Lewis, Y. et al. O-GlcNAc modification blocks the aggregation and toxicity of the protein α-synuclein associated with Parkinson's disease. Nature Chem 7, 913–920 (2015). https://doi.org/10.1038/nchem.2361

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2361

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing