Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cooperative singlet and triplet exciton transport in tetracene crystals visualized by ultrafast microscopy

Abstract

Singlet fission presents an attractive solution to overcome the Shockley–Queisser limit by generating two triplet excitons from one singlet exciton. However, although triplet excitons are long-lived, their transport occurs through a Dexter transfer, making them slower than singlet excitons, which travel by means of a Förster mechanism. A thorough understanding of the interplay between singlet fission and exciton transport is therefore necessary to assess the potential and challenges of singlet-fission utilization. Here, we report a direct visualization of exciton transport in single tetracene crystals using transient absorption microscopy with 200 fs time resolution and 50 nm spatial precision. These measurements reveal a new singlet-mediated transport mechanism for triplets, which leads to an enhancement in effective triplet exciton diffusion of more than one order of magnitude on picosecond to nanosecond timescales. These results establish that there are optimal energetics of singlet and triplet excitons that benefit both singlet fission and exciton diffusion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Excited-state absorption spectra of singlet and triplet excitons.
Figure 2: Triplet exciton propagation imaged with a probe wavelength of 810 nm.
Figure 3: Singlet exciton propagation imaged with a probe wavelength of 633 nm.
Figure 4: Modelling of singlet and triplet exciton transport.
Figure 5: Population equilibrium and exciton transport in tetracene crystals.

Similar content being viewed by others

References

  1. Merrifield, R. E., Avakian, P. & Groff, R. P. Fission of singlet excitons into pairs of triplet excitons in tetracene crystals. Chem. Phys. Lett. 3, 386–388 (1969).

    Article  CAS  Google Scholar 

  2. Muller, A. M., Avlasevich, Y. S., Schoeller, W. W., Mullen, K. & Bardeen, C. J. Exciton fission and fusion in bis(tetracene) molecules with different covalent linker structures. J. Am. Chem. Soc. 129, 14240–14250 (2007).

    Article  Google Scholar 

  3. Johnson, J. C., Nozik, A. J. & Michl, J. High triplet yield from singlet fission in a thin film of 1,3-diphenylisobenzofuran. J. Am. Chem. Soc. 132, 16302–16303 (2010).

    Article  CAS  Google Scholar 

  4. Wang, C. & Tauber, M. J. High-yield singlet fission in a zeaxanthin aggregate observed by picosecond resonance Raman spectroscopy. J. Am. Chem. Soc. 132, 13988–13991 (2010).

    Article  CAS  Google Scholar 

  5. Roberts, S. T. et al. Efficient singlet fission discovered in a disordered acene film. J. Am. Chem. Soc. 134, 6388–6400 (2012).

    Article  CAS  Google Scholar 

  6. Ramanan, C., Smeigh, A. L., Anthony, J. E., Marks, T. J. & Wasielewski, M. R. Competition between singlet fission and charge separation in solution-processed blend films of 6,13-bis(triisopropylsilylethynyl)pentacene with sterically-encumbered perylene-3,4:9,10-bis(dicarboximide)s. J. Am. Chem. Soc. 134, 386–397 (2012).

    Article  CAS  Google Scholar 

  7. Wilson, M. W. et al. Temperature-independent singlet exciton fission in tetracene. J. Am. Chem. Soc. 135, 16680–16688 (2013).

    Article  CAS  Google Scholar 

  8. Walker, B. J., Musser, A. J., Beljonne, D. & Friend, R. H. Singlet exciton fission in solution. Nature Chem. 5, 1019–1024 (2013).

    Article  CAS  Google Scholar 

  9. Piland, G. B. & Bardeen, C. J. How morphology affects singlet fission in crystalline tetracene. J. Phys. Chem. Lett. 6, 1841–1846 (2015).

    Article  CAS  Google Scholar 

  10. Pensack, R. D. et al. Exciton delocalization drives rapid singlet fission in nanoparticles of acene derivatives. J. Am. Chem. Soc. 137, 6790–6803 (2015).

    Article  CAS  Google Scholar 

  11. Ehrler, B. et al. In situ measurement of exciton energy in hybrid singlet-fission solar cells. Nature Commun. 3, 1019 (2012).

    Article  Google Scholar 

  12. Congreve, D. N. et al. External quantum efficiency above 100% in a singlet-exciton-fission-based organic photovoltaic cell. Science 340, 334–337 (2013).

    Article  CAS  Google Scholar 

  13. Grumstrup, E. M., Johnson, J. C. & Damrauer, N. H. Enhanced triplet formation in polycrystalline tetracene films by femtosecond optical-pulse shaping. Phys. Rev. Lett. 105, 257403 (2010).

    Article  Google Scholar 

  14. Chan, W.-L. et al. Observing the multiexciton state in singlet fission and ensuing ultrafast multielectron transfer. Science 334, 1541–1545 (2011).

    Article  CAS  Google Scholar 

  15. Burdett, J. J. & Bardeen, C. J. Quantum beats in crystalline tetracene delayed fluorescence due to triplet pair coherences produced by direct singlet fission. J. Am. Chem. Soc. 134, 8597–8607 (2012).

    Article  CAS  Google Scholar 

  16. Chan, W. L. et al. The quantum coherent mechanism for singlet fission: experiment and theory. Acc. Chem. Res. 46, 1321–1329 (2013).

    Article  CAS  Google Scholar 

  17. Johnson, J. C., Nozik, A. J. & Michl, J. The role of chromophore coupling in singlet fission. Acc. Chem. Res. 46, 1290–1299 (2013).

    Article  CAS  Google Scholar 

  18. Zimmerman, P. M., Zhang, Z. & Musgrave, C. B. Singlet fission in pentacene through multi-exciton quantum states. Nature Chem. 2, 648–652 (2010).

    Article  CAS  Google Scholar 

  19. Yost, S. R. et al. A transferable model for singlet-fission kinetics. Nature Chem. 6, 492–497 (2014).

    Article  CAS  Google Scholar 

  20. Bardeen, C. J. The structure and dynamics of molecular excitons. Annu. Rev. Phys. Chem. 65, 127–148 (2014).

    Article  CAS  Google Scholar 

  21. Sun, Y. et al. Management of singlet and triplet excitons for efficient white organic light-emitting devices. Nature 440, 908–912 (2006).

    Article  CAS  Google Scholar 

  22. Najafov, H., Lee, B., Zhou, Q., Feldman, L. C. & Podzorov, V. Observation of long-range exciton diffusion in highly ordered organic semiconductors. Nature Mater. 9, 938–943 (2010).

    Article  CAS  Google Scholar 

  23. Irkhin, P. & Biaggio, I. Direct imaging of anisotropic exciton diffusion and triplet diffusion length in rubrene single crystals. Phys. Rev. Lett. 107, 017402 (2011).

    Article  Google Scholar 

  24. Yost, S. R., Hontz, E., Yeganeh, S. & Van Voorhis, T. Triplet vs singlet energy transfer in organic semiconductors: the tortoise and the hare. J. Phys. Chem. C 116, 17369–17377 (2012).

    Article  CAS  Google Scholar 

  25. Dexter, D. L. A theory of sensitized luminescence in solids. J. Chem. Phys. 21, 836–850 (1953).

    Article  CAS  Google Scholar 

  26. Ern, V., Avakian, P. & Merrifield, R. Diffusion of triplet excitons in anthracene crystals. Phys. Rev. 148, 862–867 (1966).

    Article  CAS  Google Scholar 

  27. Rose, T. S., Righini, R. & Fayer, M. D. Picosecond transient grating measurements of singlet exciton transport in anthracene single crystals. Chem. Phys. Lett. 106, 13–19 (1984).

    Article  CAS  Google Scholar 

  28. Silbey, R. Electronic-energy transfer in molecular-crystals. Annu. Rev. Phys. Chem. 27, 203–223 (1976).

    Article  CAS  Google Scholar 

  29. Köhler, A. & Bässler, H. What controls triplet exciton transfer in organic semiconductors? J. Mater. Chem. 21, 4003–4011 (2011).

    Article  Google Scholar 

  30. Akselrod, G. M. et al. Visualization of exciton transport in ordered and disordered molecular solids. Nature Commun. 5, 3646 (2014).

    Article  CAS  Google Scholar 

  31. Ribierre, J., Ruseckas, A., Samuel, I., Staton, S. & Burn, P. Temperature dependence of the triplet diffusion and quenching rates in films of an Ir(ppy)3-cored dendrimer. Phys. Rev. B 77, 085211 (2008).

    Article  Google Scholar 

  32. Lunt, R. R., Benziger, J. B. & Forrest, S. R. Relationship between crystalline order and exciton diffusion length in molecular organic semiconductors. Adv. Mater. 22, 1233–1236 (2010).

    Article  CAS  Google Scholar 

  33. Mikhnenko, O., Ruiter, R., Blom, P. & Loi, M. Direct measurement of the triplet exciton diffusion length in organic semiconductors. Phys. Rev. Lett. 108, 137401 (2012).

    Article  Google Scholar 

  34. Scully, S. R. & McGehee, M. D. Effects of optical interference and energy transfer on exciton diffusion length measurements in organic semiconductors. J. Appl. Phys. 100, 034907 (2006).

    Article  Google Scholar 

  35. Gabriel, M. M. et al. Direct imaging of free carrier and trap carrier motion in silicon nanowires by spatially-separated femtosecond pump–probe microscopy. Nano Lett. 13, 1336–1340 (2013).

    Article  CAS  Google Scholar 

  36. Wong, C. T. O., Lo, S. S. & Huang, L. Ultrafast spatial imaging of charge dynamics in heterogeneous polymer blends. J. Phys. Chem. Lett. 3, 879–884 (2012).

    Article  CAS  Google Scholar 

  37. Wong, C. Y., Cotts, B. L., Wu, H. & Ginsberg, N. S. Exciton dynamics reveal aggregates with intermolecular order at hidden interfaces in solution-cast organic semiconducting films. Nature Commun. 6, 5946 (2015).

    Article  CAS  Google Scholar 

  38. Tavazzi, S. et al. Dielectric tensor of tetracene single crystals: the effect of anisotropy on polarized absorption and emission spectra. J. Chem. Phys. 128, 154709 (2008).

    Article  CAS  Google Scholar 

  39. Zhang, B. et al. Polarization-dependent exciton dynamics in tetracene single crystals. J. Chem. Phys. 141, 244303 (2014).

    Article  Google Scholar 

  40. Snellenburg, J. J., Laptenok, S. P., Seger, R., Mullen, K. M. & van Stokkum, I. H. Glotaran: a Java-based graphical user interface for the R package TIMP. J. Stat. Softw. 49, 1–22 (2012).

    Article  Google Scholar 

  41. Burdett, J. J., Müller, A. M., Gosztola, D. & Bardeen, C. J. Excited state dynamics in solid and monomeric tetracene: the roles of superradiance and exciton fission. J. Chem. Phys. 133, 144506 (2010).

    Article  Google Scholar 

  42. Chan, W.-L., Ligges, M. & Zhu, X.-Y. The energy barrier in singlet fission can be overcome through coherent coupling and entropic gain. Nature Chem. 4, 840–845 (2012).

    Article  CAS  Google Scholar 

  43. Guo, Z., Manser, J. S., Wan, Y., Kamat, P. V. & Huang, L. Spatial and temporal imaging of long-range charge transport in perovskite thin films by ultrafast microscopy. Nature Commun. 6, 7471 (2015).

    Article  CAS  Google Scholar 

  44. Bayliss, S. L. et al. Geminate and nongeminate recombination of triplet excitons formed by singlet fission. Phys. Rev. Lett. 112, 238701 (2014).

    Article  Google Scholar 

  45. Fleming, G., Millar, D., Morris, G., Morris, J. & Robinson, G. Exciton fission and annihilation in crystalline tetracene. Aust. J. Chem. 30, 2353–2359 (1977).

    Article  CAS  Google Scholar 

  46. Michel-Beyerle, M. E., Haberkorn, R., Kinder, J. & Seidlitz, H. Direct evidence for the singlet–triplet exciton annihilation in anthracene crystals. Phys. Status Solidi B 85, 45–49 (1978).

    Article  CAS  Google Scholar 

  47. Heisel, F., Miehe, J. A., Sipp, B. & Schott, M. Experimental evidence for the influence of excition interactions on the temporal decay of crystalline tetracene fluorescence. Phys. Rev. Lett. 43, 534–538 (1976).

    CAS  Google Scholar 

  48. Sharifzadeh, S. et al. Relating the physical structure and optoelectronic function of crystalline TIPS–pentacene. Adv. Funct. Mater. 25, 2038–2046 (2014).

    Article  Google Scholar 

  49. Musser, A. J. et al. Evidence for conical intersection dynamics mediating ultrafast singlet exciton fission. Nature Phys. 11, 352–357 (2015).

    Article  CAS  Google Scholar 

  50. Laudise, R. A., Kloc, C., Simpkins, P. G. & Siegrist, T. Physical vapor growth of organic semiconductors. J. Cryst. Growth 187, 449–454 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

L.H. acknowledges start-up funding from Purdue University. The authors acknowledge the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences of the US Department of Energy for funding work carried out at the Radiation Laboratory at the University of Notre Dame and at National Renewable Energy Laboratory under grant no. DE-FC02-04ER15533 and DE-AC36-08GO28308, respectively. The authors thank J. Parkhill for discussions and J. Mei for the TIPS pentacene sample.

Author information

Authors and Affiliations

Authors

Contributions

L.H. and Y.W. designed the experiments. Y.W., S.Y. and T.Z. carried out the measurements. J.J. contributed materials and provided inputs in editing the manuscript. Y.W., Z.G. and L.H. analysed and modelled the data. Y.W. and L.H. wrote the manuscript.

Corresponding author

Correspondence to Libai Huang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, Y., Guo, Z., Zhu, T. et al. Cooperative singlet and triplet exciton transport in tetracene crystals visualized by ultrafast microscopy. Nature Chem 7, 785–792 (2015). https://doi.org/10.1038/nchem.2348

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2348

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing