Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Spatially resolved multicomponent gels


Multicomponent supramolecular systems could be used to prepare exciting new functional materials, but it is often challenging to control the assembly across multiple length scales. Here we report a simple approach to forming patterned, spatially resolved multicomponent supramolecular hydrogels. A multicomponent gel is first formed from two low-molecular-weight gelators and consists of two types of fibre, each formed by only one gelator. One type of fibre in this ‘self-sorted network’ is then removed selectively by a light-triggered gel-to-sol transition. We show that the remaining network has the same mechanical properties as it would have done if it initially formed alone. The selective irradiation of sections of the gel through a mask leads to the formation of patterned multicomponent networks, in which either one or two networks can be present at a particular position with a high degree of spatial control.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Schematic of assembly process.
Figure 2: Light-responsive gels formed from 1.
Figure 3: Multicomponent gels.
Figure 4: Selective network removal.
Figure 5: Spatially resolved removal of one network.


  1. 1

    Terech, P. & Weiss, R. G. Low molecular mass gelators of organic liquids and the properties of their gels. Chem. Rev. 97, 3133–3160 (1997).

    CAS  Article  Google Scholar 

  2. 2

    Weiss, R. G. The past, present, and future of molecular gels. What is the status of the field, and where is it going? J. Am. Chem. Soc. 136, 7519–7530 (2014).

    CAS  Article  Google Scholar 

  3. 3

    Raeburn, J. & Adams, D. J. Multicomponent low molecular weight gelators. Chem. Commun. 51, 5170–5180 (2015).

    CAS  Article  Google Scholar 

  4. 4

    Buerkle, L. E. & Rowan, S. J. Supramolecular gels formed from multi-component low molecular weight species. Chem. Soc. Rev. 41, 6089–6102 (2012).

    CAS  Article  Google Scholar 

  5. 5

    Hirst, A. R. et al. Self-assembly of two-component gels: stoichiometric control and component selection. Chem. Eur. J. 15, 372–379 (2009).

    CAS  Article  Google Scholar 

  6. 6

    Adhikari, B., Nanda, J. & Banerjee, A. Multicomponent hydrogels from enantiomeric amino acid derivatives: helical nanofibers, handedness and self-sorting. Soft Matter 7, 8913–8922 (2011).

    CAS  Article  Google Scholar 

  7. 7

    Sugiyasu, K., Kawano, S. I., Fujita, N. & Shinkai, S. Self-sorting organogels with p–n heterojunction points. Chem. Mater. 20, 2863–2865 (2008).

    CAS  Article  Google Scholar 

  8. 8

    Raeburn, J., Zamith Cardoso, A. & Adams, D. J. The importance of the self-assembly process to control mechanical properties of low molecular weight hydrogels. Chem. Soc. Rev. 42, 5143–5156 (2013).

    CAS  Article  Google Scholar 

  9. 9

    Molla, M. R., Das, A. & Ghosh, S. Chiral induction by helical neighbour: spectroscopic visualization of macroscopic-interaction among self-sorted donor and acceptor π-stacks. Chem. Commun. 47, 8934–8936 (2011).

    CAS  Article  Google Scholar 

  10. 10

    Huang, Y. et al. Supramolecular hydrogels based on short peptides linked with conformational switch. Org. Biomol. Chem. 9, 2149–2155 (2011).

    CAS  Article  Google Scholar 

  11. 11

    Li, X., Gao, Y., Kuang, Y. & Xu, B. Enzymatic formation of a photoresponsive supramolecular hydrogel. Chem. Commun. 46, 5364–5366 (2010).

    CAS  Article  Google Scholar 

  12. 12

    Qiu, Z., Yu, H., Li, J., Wang, Y. & Zhang, Y. Spiropyran-linked dipeptide forms supramolecular hydrogel with dual responses to light and to ligand–receptor interaction. Chem. Commun. 3342–3344 (2009).

  13. 13

    Sako, Y. & Takaguchi, Y. A photo-responsive hydrogelator having gluconamides at its peripheral branches. Org. Biomol. Chem. 6, 3843–3847 (2008).

    CAS  Article  Google Scholar 

  14. 14

    Haines, L. A. et al. Light-activated hydrogel formation via the triggered folding and self-assembly of a designed peptide. J. Am. Chem. Soc. 127, 17025–17029 (2005).

    CAS  Article  Google Scholar 

  15. 15

    Muraoka, T., Koh, C.-Y., Cui, H. & Stupp, S. I. Light-triggered bioactivity in three dimensions. Angew. Chem. Int. Ed. 48, 5946–5949 (2009).

    CAS  Article  Google Scholar 

  16. 16

    Doran, T. M., Ryan, D. M. & Nilsson, B. L. Reversible photocontrol of self-assembled peptide hydrogel viscoelasticity. Polymer Chem. 5, 241–248 (2014).

    CAS  Article  Google Scholar 

  17. 17

    Sahoo, J. K., Nalluri, S. K. M., Javid, N., Webb, H. & Ulijn, R. V. Biocatalytic amide condensation and gelation controlled by light. Chem. Commun. 50, 5462–5464 (2014).

    CAS  Article  Google Scholar 

  18. 18

    He, M., Li, J., Tan, S., Wang, R. & Zhang, Y. Photodegradable supramolecular hydrogels with fluorescence turn-on reporter for photomodulation of cellular microenvironments. J. Am. Chem. Soc. 135, 18718–18721 (2013).

    CAS  Article  Google Scholar 

  19. 19

    Yang, R., Peng, S., Wan, W. & Hughes, T. C. Azobenzene based multistimuli responsive supramolecular hydrogels. J. Mater. Chem. C 2, 9122–9131 (2014).

    CAS  Article  Google Scholar 

  20. 20

    Maity, C., Hendriksen, W. E., van Esch, J. H. & Eelkema, R. Spatial structuring of a supramolecular hydrogel by using a visible-light triggered catalyst. Angew. Chem. Int. Ed. 54, 998–1001 (2015).

    CAS  Article  Google Scholar 

  21. 21

    Sun, Z. et al. Multistimuli-responsive supramolecular gels: design rationale, recent advances, and perspectives. ChemPhysChem 15, 2421–2430 (2014).

    CAS  Article  Google Scholar 

  22. 22

    van Herpt, J. T., Stuart, M. C. A., Browne, W. R. & Feringa, B. L. A dithienylethene-based rewritable hydrogelator. Chem. Eur. J. 20, 3077–3083 (2014).

    CAS  Article  Google Scholar 

  23. 23

    Kloxin, A. M., Kasko, A. M., Salinas, C. N. & Anseth, K. S. Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324, 59–63 (2009).

    CAS  Article  Google Scholar 

  24. 24

    Yan, B., Boyer, J.-C., Habault, D., Branda, N. R. & Zhao, Y. Near infrared light triggered release of biomacromolecules from hydrogels loaded with upconversion nanoparticles. J. Am. Chem. Soc. 134, 16558–16561 (2012).

    CAS  Article  Google Scholar 

  25. 25

    Morris, K. L. et al. Chemically programmed self-sorting of gelator networks. Nature Commun. 4, 1480 (2013).

    Article  Google Scholar 

  26. 26

    Colquhoun, C. et al. The effect of self-sorting and co-assembly on the mechanical properties of low molecular weight hydrogels. Nanoscale 6, 13719–13725 (2014).

    CAS  Article  Google Scholar 

  27. 27

    Raeburn, J. et al. Electrochemically-triggered spatially and temporally resolved multi-component gels. Mater. Horiz. 1, 241–246 (2014).

    CAS  Article  Google Scholar 

  28. 28

    Pocker, Y. & Green, E. Hydrolysis of D-glucono-δ-lactone. I. General acid–base catalysis, solvent deuterium isotope effects, and transition state characterization. J. Am. Chem. Soc. 95, 113–119 (1973).

    CAS  Article  Google Scholar 

  29. 29

    Adams, D. J. et al. A new method for maintaining homogeneity during liquid–hydrogel transitions using low molecular weight hydrogelators. Soft Matter 5, 1856–1862 (2009).

    CAS  Article  Google Scholar 

  30. 30

    Chen, L., Revel, S., Morris, K., Serpell, L. C. & Adams, D. J. Effect of molecular structure on the properties of naphthalene–dipeptide hydrogelators. Langmuir 26, 13466–13471 (2010).

    CAS  Article  Google Scholar 

  31. 31

    Houton, K. A. et al. On crystal versus fiber formation in dipeptide hydrogelator systems. Langmuir 28, 9797–9806 (2012).

    CAS  Article  Google Scholar 

  32. 32

    Chen, L. et al. Self-assembly mechanism for a naphthalene–dipeptide leading to hydrogelation. Langmuir 26, 5232–5242 (2010).

    CAS  Article  Google Scholar 

  33. 33

    Fleming, S., Debnath, S., Frederix, P. W. J. M., Hunt, N. T. & Ulijn, R. V. Insights into the coassembly of hydrogelators and surfactants based on aromatic peptide amphiphiles. Biomacromolecules 15, 1171–1184 (2014).

    CAS  Article  Google Scholar 

  34. 34

    Haque, M. A., Kurokawa, T. & Gong, J. P. Super tough double network hydrogels and their application as biomaterials. Polymer 53, 1805–1822 (2012).

    CAS  Article  Google Scholar 

Download references


E.R.D. thanks the Engineering and Physical Sciences Research Council (EPSRC) for a Doctorial Training Accounts studentship. D.A. thanks the EPSRC for a Fellowship (EP/L021978/1).

Author information




E.R.D. and D.J.A. conceived the project and synthesized the gelators. E.R.D. and D.J.A. designed the experiments. E.R.D. carried out the gelation, irradiation and rheological experiments. E.G.B.E. carried out the NMR experiments. T.O.M. carried out the SEM experiments. All the authors contributed to writing the paper.

Corresponding author

Correspondence to Dave J. Adams.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1459 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Draper, E., Eden, E., McDonald, T. et al. Spatially resolved multicomponent gels. Nature Chem 7, 848–852 (2015).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing