Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Formal SiH4 chemistry using stable and easy-to-handle surrogates

Abstract

Monosilane (SiH4) is far less well behaved than its carbon analogue methane (CH4). It is a colourless gas that is industrially relevant as a source of elemental silicon, but its pyrophoric and explosive nature makes its handling and use challenging. Consequently, synthetic applications of SiH4 in academic laboratories are extremely rare and methodologies based on SiH4 are underdeveloped. Safe and controlled alternatives to the substituent redistribution approaches of hydrosilanes are desirable and cyclohexa-2,5-dien-1-ylsilanes where the cyclohexa-1,4-diene units serve as placeholders for the hydrogen atoms have been identified as potent surrogates of SiH4. We disclose here that the commercially available Lewis acid tris(pentafluorophenyl)borane, B(C6F5)3, is able to promote the release of the Si–H bond catalytically while subsequently enabling the hydrosilylation of C–C multiple bonds in the same pot. The net reactions are transition-metal-free transfer hydrosilylations with SiH4 as a building block for the preparation of various hydrosilanes.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Transfer hydrosilylation: mechanism and implementation for the release of SiH4.
Figure 2: Syntheses and evaluation of cyclohexa-2,5-dien-1-ylsilanes 2ac as potential SiH4 surrogates.
Figure 3: Time-dependent NMR study of the transfer hydrosilylation of 4a with 2b catalysed by 1a.
Figure 4: The cyclohexa-2,5-dien-1-yl substituent as a SiH protecting group in transition-metal-catalysed reactions.

References

  1. Simonneau, A. & Oestreich, M. 3-Silylated cyclohexa-1,4-dienes as precursors for gaseous hydrosilanes: the B(C6F5)3-catalyzed transfer hydrosilylation of alkenes. Angew. Chem. Int. Ed. 52, 11905–11907 (2013).

    CAS  Google Scholar 

  2. Simonneau, A., Friebel, J. & Oestreich, M. Salt-free preparation of trimethylsilyl ethers by B(C6F5)3-catalyzed transfer silylation by using a Me3SiH surrogate. Eur. J. Org. Chem. 2077–2083 (2014).

  3. Keess, S., Simonneau, A. & Oestreich, M. Direct and transfer hydrosilylation reactions catalyzed by fully or partially fluorinated triarylboranes: a systematic study. Organometallics 34, 790–799 (2015).

    CAS  Google Scholar 

  4. Oestreich, M. & Simonneau, A. Use of cyclohexa-2,5-dien-1-yl-silanes as precursors for gaseous hydrosilanes. PCT International Patent Application WO 2015036309, A1 20150319 (2015).

  5. Oestreich, M., Hermeke, J. & Mohr, J. A unified survey of Si–H and H–H bond activation catalysed by electron-deficient boranes. Chem. Soc. Rev. 44, 2202–2220 (2015).

    CAS  PubMed  Google Scholar 

  6. Piers, W. E., Marwitz, A. J. V. & Mercier, L. G. Mechanistic aspects of bond activation with perfluoroarylboranes. Inorg. Chem. 50, 12252–12262 (2011).

    CAS  PubMed  Google Scholar 

  7. Webb, J. D., Laberge, V. S., Geier, S. J., Stephan, D. W. & Crudden, C. M. Borohydrides from organic hydrides: reactions of Hantzsch's esters with B(C6F5)3 . Chem. Eur. J. 16, 4895–4902 (2010).

    CAS  PubMed  Google Scholar 

  8. Gutsulyak, D. V., van der Est, A. & Nikonov, G. I. Facile catalytic hydrosilylation of pyridines. Angew. Chem. Int. Ed. 50, 1384–1387 (2011).

    CAS  Google Scholar 

  9. Houghton, A. Y., Hurmalainen, J., Mansikkamäki, A., Piers, W. E. & Tuononen, H. M. Direct observation of a borane–silane complex involved in frustrated Lewis-pair-mediated hydrosilylations. Nature Chem. 6, 983–988 (2014).

    CAS  Google Scholar 

  10. Parks, D. J. & Piers, W. E. Tris(pentafluorophenyl)boron-catalyzed hydrosilation of aromatic aldehydes, ketones, and esters. J. Am. Chem. Soc. 118, 9440–9441 (1996).

    CAS  Google Scholar 

  11. Rendler, S. & Oestreich, M. Conclusive evidence for an SN2-Si mechanism in the B(C6F5)3-catalyzed hydrosilylation of carbonyl compounds: implications for the related hydrogenation. Angew. Chem. Int. Ed. 47, 5997–6000 (2008).

    CAS  Google Scholar 

  12. Rubin, M., Schwier, T. & Gevorgyan, V. Highly efficient B(C6F5)3-catalyzed hydrosilylation of olefins. J. Org. Chem. 67, 1936–1940 (2002).

    CAS  PubMed  Google Scholar 

  13. Sakata, K. & Fujimoto, H. Quantum chemical study of the reaction of 3-(trimethylsilyl)cyclohexa-1,4-dienes with B(C6F5)3 . Organometallics 34, 236–241 (2014).

    Google Scholar 

  14. DHHS. NIOSH Pocket Guide to Chemical Hazards 279 (Department of Health and Human Services, US Government Printing Office, 2007).

    Google Scholar 

  15. Chen, J. R. Characteristics of fire and explosion in semiconductor fabrication processes. Process Saf. Prog. 21, 19–25 (2002).

    CAS  Google Scholar 

  16. Chen, J.-R. et al. Analysis of a silane explosion in a photovoltaic fabrication plant. Process Saf. Prog. 25, 237–244 (2006).

    CAS  Google Scholar 

  17. Chang, Y.-Y. et al. Revisiting of a silane explosion in a photovoltaic fabrication plant. Process Saf. Prog. 26, 155–158 (2007).

    CAS  Google Scholar 

  18. Simmler, W. in Ullmann’s Encyclopedia of Industrial Chemistry Vol. 32, 615–636 (Wiley, 2012).

    Google Scholar 

  19. Arkles, B. in Kirk–Othmer Encyclopedia of Chemical Technology (Wiley, 2000); http://doi.org/fk2mj7

    Google Scholar 

  20. Schmidt, V., Wittemann, J. V. & Gosele, U. Growth, thermodynamics, and electrical properties of silicon nanowires. Chem. Rev. 110, 361–388 (2010).

    CAS  PubMed  Google Scholar 

  21. Schmidt, V., Wittemann, J. V., Senz, S. & Goesele, U. Silicon nanowires. A review on aspects of their growth and their electrical properties. Adv. Mater. 21, 2681–2702 (2009).

    CAS  Google Scholar 

  22. Roca i Cabarrocas, P. Plasma enhanced chemical vapor deposition of silicon thin films for large area electronics. Curr. Opin. Solid State Mater. Sci. 6, 439–444 (2002).

    CAS  Google Scholar 

  23. Matsumura, H. Formation of silicon-based thin films prepared by catalytic chemical vapor deposition (Cat-CVD) method. Jpn J. Appl. Phys. 37, 3175–3187 (1998).

    CAS  Google Scholar 

  24. Marciniec, B. (ed.) Hydrosilylation (Springer, 2009).

    Google Scholar 

  25. Yamamoto, K. & Hayashi, T. in Transition Metals for Organic Synthesis 2nd edn (eds Beller, M. & Bolm, C.) 167–191 (Wiley, 2004).

    Google Scholar 

  26. Ojima, I., Li, Z. & Zhu, J. in The Chemistry of Organic Silicon Compounds (eds Rappoport, Z. & Apeloig, Y.) 1687–1792 (Wiley, 1998).

    Google Scholar 

  27. Ito, M., Abe, T., Takeuchi, A., Iwata, K. & Kobayashi, M. Preparation of organosilicon compounds. Japanese Patent JP 02045490, A1 9900215 (1990).

  28. Itoh, M., Iwata, K., Takeuchi, R. & Kobayashi, M. Hydrosilation of olefins with monosilane catalyzed by transition metal complexes. J. Organomet. Chem. 420, C5–C8 (1991).

    CAS  Google Scholar 

  29. Mitsuzuka, M., Uchiumi, T., Iwata, K. & Ito, M. Preparation of organosilanes from monosilane and olefins. Japanese Patent JP 07002875, A1 9950106 (1995).

  30. Kobayashi, M. & Itoh, M. Hydrosilylation of olefins with monosilane in the presence of lithium aluminum hydride. Chem. Lett. 25, 1013–1014 (1996).

    Google Scholar 

  31. Itoh, M., Iwata, K. & Kobayashi, M. Silylation reactions of olefins with monosilane and disilane in the presence of a transition metal complex, metal hydride, and radical initiator. J. Organomet. Chem. 574, 241–245 (1999).

    CAS  Google Scholar 

  32. Gilman, H. & Miles, D. Disproportionation reaction of diphenylsilane in the absence of any added catalyst. J. Org. Chem. 23, 326–328 (1958).

    CAS  Google Scholar 

  33. Voutchkova, A. M. et al. Selective partial reduction of quinolines: hydrosilylation vs. transfer hydrogenation. J. Organomet. Chem. 693, 1815–1821 (2008).

    CAS  Google Scholar 

  34. Brandsma, L. & Zwikker, J. W. in Science of Synthesis Vol. 8a (eds Snieckus, V. & Majewski, M.) 313–327 (Thieme, 2006).

    Google Scholar 

  35. Brook, M. A. Silicon in Organic, Organometallic, and Polymer Chemistry 409 (Wiley, 2000).

    Google Scholar 

  36. Ullrich, M., Lough, A. J. & Stephan, D. W. Reversible, metal-free, heterolytic activation of H2 at room temperature. J. Am. Chem. Soc. 131, 52–53 (2009).

    CAS  PubMed  Google Scholar 

  37. Li, L., Stern, C. L. & Marks, T. J. Bis(pentafluorophenyl)(2-perfluorobiphenylyl)borane. A new perfluoroarylborane cocatalyst for single-site olefin polymerization. Organometallics 19, 3332–3337 (2000).

    CAS  Google Scholar 

  38. Chen, Y.-X., Stern, C. L., Yang, S. & Marks, T. J. Organo-Lewis acids as cocatalysts in cationic metallocene polymerization catalysis. Unusual characteristics of sterically encumbered tris(perfluorobiphenyl)borane. J. Am. Chem. Soc. 118, 12451–12452 (1996).

    CAS  Google Scholar 

  39. Gutmann, V. Solvent effects on the reactivities of organometallic compounds. Coord. Chem. Rev. 18, 225–255 (1976).

    CAS  Google Scholar 

  40. Beckett, M. A., Brassington, D. S., Coles, S. J. & Hursthouse, M. B. Lewis acidity of tris(pentafluorophenyl)borane: crystal and molecular structure of B(C6F5)3·OPEt3 . Inorg. Chem. Commun. 3, 530–533 (2000).

    CAS  Google Scholar 

  41. Lambert, J. B. The interaction of silicon with positively charged carbon. Tetrahedron 46, 2677–2689 (1990).

    CAS  Google Scholar 

  42. Curless, L. D. & Ingleson, M. J. B(C6F5)3-catalyzed synthesis of benzofused siloles. Organometallics 33, 7241–7246 (2014).

    CAS  Google Scholar 

  43. Fadeev, A. Y. & McCarthy, T. J. A new route to covalently attached monolayers: reaction of hydridosilanes with titanium and other metal surfaces. J. Am. Chem. Soc. 121, 12184–12185 (1999).

    CAS  Google Scholar 

  44. Owens, T. M., Nicholson, K. T., Banaszak Holl, M. M. & Suezer, S. Formation of alkylsilane-based monolayers on gold. J. Am. Chem. Soc. 124, 6800–6801 (2002).

    CAS  PubMed  Google Scholar 

  45. Pelzer, K., Haevecker, M., Boualleg, M., Candy, J.-P. & Basset, J.-M. Stabilization of 200-atom platinum nanoparticles by organosilane fragments. Angew. Chem. Int. Ed. 50, 5170–5173 (2011).

    CAS  Google Scholar 

  46. Baudouin, D. et al. Nickel–silicide colloid prepared under mild conditions as a versatile Ni precursor for more efficient CO2 reforming of CH4 catalysts. J. Am. Chem. Soc. 134, 20624–20627 (2012).

    CAS  PubMed  Google Scholar 

  47. Tuan, H.-Y., Lee, D. C., Hanrath, T. & Korgel, B. A. Catalytic solid-phase seeding of silicon nanowires by nickel nanocrystals in organic solvents. Nano Lett. 5, 681–684 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Alexander von Humboldt Foundation (postdoctoral fellowship to A.S., 2014‒2015) and the Deutsche Forschungsgemeinschaft (Oe 249/11-1). M.O. is indebted to the Einstein Foundation (Berlin) for an endowed professorship. The authors thank E. Irran for the X-ray analysis, S. Kemper for expert advice on NMR spectroscopy, as well as L. Omann and O. Yahiaoui for experimental support (all TU Berlin).

Author information

Authors and Affiliations

Authors

Contributions

A.S. and M.O. conceived and designed the experiments. A.S. performed the experiments and analysed the data. A.S. and M.O. discussed the results and co-wrote the paper.

Corresponding author

Correspondence to Martin Oestreich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4208 kb)

Supplementary information

Crystallographic data for compound 2b. (CIF 12 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Simonneau, A., Oestreich, M. Formal SiH4 chemistry using stable and easy-to-handle surrogates. Nature Chem 7, 816–822 (2015). https://doi.org/10.1038/nchem.2329

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2329

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing