Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

On the mechanism of vibrational control of light-induced charge transfer in donor–bridge–acceptor assemblies

Abstract

Nuclear–electronic (vibronic) coupling is increasingly recognized as a mechanism of major importance in controlling the light-induced function of molecular systems. It was recently shown that infrared light excitation of intramolecular vibrations can radically change the efficiency of electron transfer, a fundamental chemical process. We now extend and generalize the understanding of this phenomenon by probing and perturbing vibronic coupling in several molecules in solution. In the experiments an ultrafast electronic–vibrational pulse sequence is applied to a range of donor–bridge–acceptor Pt(II) trans-acetylide assemblies, for which infrared excitation of selected bridge vibrations during ultraviolet-initiated charge separation alters the yields of light-induced product states. The experiments, augmented by quantum chemical calculations, reveal a complex combination of vibronic mechanisms responsible for the observed changes in electron transfer rates and pathways. The study raises new fundamental questions about the function of vibrational processes immediately following charge transfer photoexcitation, and highlights the molecular features necessary for external vibronic control of excited-state processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Summary of infrared-control experiments.
Figure 2: TRIR and infrared control results for all three molecular systems.
Figure 3: Excited-state dynamics of PTZ-Pt-NAP with and without infrared excitation.
Figure 4: Calculated energies of the CT (triplet, black), CSS (triplet, blue) and 3NAP (triplet, red) states along the NAP side C≡C coordinate in the ground state geometries of the molecules studied, in CH2Cl2.
Figure 5: Measuring the ν(C≡C) IVR rate in different electronic states of OMe-PTZ-Pt-NAP in CH2Cl2.

Similar content being viewed by others

References

  1. Balzani, V. Electron Transfer in Chemistry (Wiley-VCH, 2001).

    Book  Google Scholar 

  2. Schrauben, J. N., Dillman, K. L., Beck, W. F. & McCusker, J. K. Vibrational coherence in the excited state dynamics of Cr(acac)3: probing the reaction coordinate for ultrafast intersystem crossing. Chem. Sci. 1, 405–410 (2010).

    Article  CAS  Google Scholar 

  3. Damrauer, N. et al. Femtosecond dynamics of excited-state evolution in [Ru(bpy)3]2+. Science 275, 54–57 (1997).

    Article  CAS  Google Scholar 

  4. Cannizzo, A. et al. Femtosecond fluorescence and intersystem crossing in rhenium(I) carbonyl–bipyridine complexes. J. Am. Chem. Soc. 130, 8967–8974 (2008).

    Article  CAS  Google Scholar 

  5. Barbara, P. F., Meyer, T. J. & Ratner, M. A. Contemporary issues in electron transfer research. J. Phys. Chem. 100, 13148–13168 (1996).

    Article  CAS  Google Scholar 

  6. Vlcek, A. The life and times of excited states of organometallic and coordination compounds. Coord. Chem. Rev. 200–202, 933–977 (2000).

    Article  Google Scholar 

  7. Roberts, G. M. et al. Exploring quantum phenomena and vibrational control in σ* mediated photochemistry. Chem. Sci. 4, 993–1001 (2013).

    Article  CAS  Google Scholar 

  8. Shapiro, M. & Brumer, P. Coherent control of molecular dynamics. Rep. Prog. Phys. 66, 859–942 (2003).

    Article  CAS  Google Scholar 

  9. Prokhorenko, V. I. et al. Coherent control of retinal isomerization in bacteriorhodopsin. Science 313, 1257–1261 (2006).

    Article  CAS  Google Scholar 

  10. Conyard, J. et al. Ultrafast dynamics in the power stroke of a molecular rotary motor. Nature Chem. 4, 547–551 (2012).

    Article  CAS  Google Scholar 

  11. Davis, D., Toroker, M. C., Speiser, S. & Peskin, U. On the effect of nuclear bridge modes on donor–acceptor electronic coupling in donor–bridge–acceptor molecules. Chem. Phys. 358, 45–51 (2009).

    Article  CAS  Google Scholar 

  12. Soler, M. A., Nelson, T., Roitberg, A. E., Tretiak, S. & Fernandez-Alberti, S. Signature of nonadiabatic coupling in excited-state vibrational modes. J. Phys. Chem. A 118, 10372–10379 (2014).

    Article  CAS  Google Scholar 

  13. Skourtis, S. S., Waldeck, D. H. & Beratan, D. N. Inelastic electron tunneling erases coupling-pathway interferences. J. Phys. Chem. B 108, 15511–15518 (2004).

    Article  CAS  Google Scholar 

  14. Xiao, D., Skourtis, S. S., Rubtsov, I. V. & Beratan, D. N. Turning charge transfer on and off in a molecular interferometer with vibronic pathways. Nano Lett. 9, 1818–1823 (2009).

    Article  CAS  Google Scholar 

  15. Beratan, D. N. et al. Steering electrons on moving pathways. Acc. Chem. Res. 42, 1669–1678 (2009).

    Article  CAS  Google Scholar 

  16. Antoniou, P., Ma, Z., Zhang, P., Beratan, D. N. & Skourtis, S. S. Vibrational control of electron transfer reactions: a feasibility study for the fast coherent transfer regime. Phys. Chem. Chem. Phys. http:dx.doi.org/10.1039/C5CP00610D (2015).

  17. Elsaesser, T. & Kaiser, W. Vibrational and vibronic relaxation of large polyatomic molecules in liquids. Annu. Rev. Phys. Chem. 42, 83–107 (1991).

    Article  CAS  Google Scholar 

  18. Briney, K. A., Herman, L., Boucher, D. S., Dunkelberger, A. D. & Crim, F. F. The influence of vibrational excitation on the photoisomerization of trans-stilbene in solution. J. Phys. Chem. A 114, 9788–9794 (2010).

    Article  CAS  Google Scholar 

  19. Kasyanenko, V. M., Lin, Z., Rubtsov, G. I., Donahue, J. P. & Rubtsov, I. V. Energy transport via coordination bonds. J. Chem. Phys. 131, 154508 (2009).

    Article  Google Scholar 

  20. Delor, M. et al. Dynamics of ground and excited state vibrational relaxation and energy transfer in transition metal carbonyls. J. Phys. Chem. B 118, 11781–11791 (2014).

    Article  CAS  Google Scholar 

  21. Park, K.-H. et al. Infrared probes based on nitrile-derivatized prolines: thermal insulation effect and enhanced dynamic range. J. Phys. Chem. Lett. 4, 2105–2110 (2013).

    Article  CAS  Google Scholar 

  22. Spears, K. G., Wen, X. & Zhang, R. Electron transfer rates from vibrational quantum states. J. Phys. Chem. 100, 10206–10209 (1996).

    Article  CAS  Google Scholar 

  23. Huang, Y., Rettner, C. T., Auerbach, D. J. & Wodtke, A. M. Vibrational promotion of electron transfer. Science 290, 111–114 (2000).

    Article  CAS  Google Scholar 

  24. Yue, Y. et al. Electron transfer rate modulation in a compact Re(I) donor–acceptor complex. Dalton Trans. 44, 8609–8616 (2015).

    Article  CAS  Google Scholar 

  25. Lin, Z. et al. Modulating unimolecular charge transfer by exciting bridge vibrations. J. Am. Chem. Soc. 131, 18060–18062 (2009).

    Article  CAS  Google Scholar 

  26. Delor, M. et al. Toward control of electron transfer in donor–acceptor molecules by bond-specific infrared excitation. Science 346, 1492–1495 (2014).

    Article  CAS  Google Scholar 

  27. Scattergood, P. A. et al. Electron transfer dynamics and excited state branching in a charge-transfer platinum(II) donor–bridge–acceptor assembly. Dalton Trans. 43, 17677–17693 (2014).

    Article  CAS  Google Scholar 

  28. Kwok, W. M., Phillips, D. L., Yeung, P. K. & Yam, V. W. Resonance Raman investigation of the MLCT transition in [Pt(dppm)2(PhCtC)2] and the MMLCT transition in [Pt2(µ-dppm)2(µ-PhCtC)(PhCtC)2]+. J. Phys. Chem. A 101, 9286–9295 (1997).

    Article  CAS  Google Scholar 

  29. Delor, M., Sazanovich, I. V., Towrie, M. & Weinstein, J. A. Probing and exploiting the interplay between nuclear and electronic motion in charge transfer processes. Acc. Chem. Res. 48, 1131–1139 (2015).

    Article  CAS  Google Scholar 

  30. Bertoni, R. et al. Ultrafast light-induced spin-state trapping photophysics investigated in Fe(phen)2(NCS)2 spin-crossover crystal. Acc. Chem. Res. 48, 774–781 (2015).

    Article  CAS  Google Scholar 

  31. Schnedermann, C., Liebel, M. & Kukura, P. Mode-specificity of vibrationally coherent internal conversion in rhodopsin during the primary visual event. J. Am. Chem. Soc. 137, 2886–2891 (2015).

    Article  CAS  Google Scholar 

  32. Hamm, P. & Zanni, M. Concepts and Methods of 2D Infrared Spectroscopy (Cambridge Univ. Press, 2011).

    Book  Google Scholar 

  33. Anna, J. M., Baiz, C. R., Ross, M. R., McCanne, R. & Kubarych, K. J. Ultrafast equilibrium and non-equilibrium chemical reaction dynamics probed with multidimensional infrared spectroscopy. Int. Rev. Phys. Chem. 31, 367–419 (2012).

    Article  CAS  Google Scholar 

  34. Parmenter, S. Vibrational redistribution within excited electronic states of polyatomic molecules. Faraday Discuss. Chem. Soc. 75, 7–22 (1983).

    Article  Google Scholar 

  35. Horng, M. L., Gardecki, J. A., Papazyan, A. & Maroncelli, M. Subpicosecond measurements of polar solvation dynamics: coumarin 153 revisited. J. Phys. Chem. 99, 17311–17337 (1995).

    Article  CAS  Google Scholar 

  36. Bräm, O., Messina, F., El-Zohry, A. M., Cannizzo, A. & Chergui, M. Polychromatic femtosecond fluorescence studies of metal–polypyridine complexes in solution. Chem. Phys. 393, 51–57 (2012).

    Article  Google Scholar 

  37. Chergui, M. Ultrafast photophysics of transition metal complexes. Acc. Chem. Res. 48, 801–808 (2015).

    Article  CAS  Google Scholar 

  38. Fuller, F. D. et al. Vibronic coherence in oxygenic photosynthesis. Nature Chem. 6, 1–6 (2014).

    Article  Google Scholar 

  39. Romero, E. et al. Quantum coherence in photosynthesis for efficient solar-energy conversion. Nature Phys. 10, 676–682 (2014).

    Article  CAS  Google Scholar 

  40. Sukegawa, J. et al. Electron transfer through rigid organic molecular wires enhanced by electronic and electron–vibration coupling. Nature Chem. 6, 899–905 (2014).

    Article  CAS  Google Scholar 

  41. Bakulin, A. A. et al. The role of driving energy and delocalized states for charge separation in organic semiconductors. Science 335, 1340–1344 (2012).

    Article  CAS  Google Scholar 

  42. Greetham, G. et al. ULTRA: a unique instrument for time-resolved spectroscopy. Appl. Spectrosc. 64, 1311–1319 (2010).

    Article  CAS  Google Scholar 

  43. Snellenburg, J. J., Laptenok, S. P., Seger, R., Mullen, K. M. & van Stokkum, I. H. M. Glotaran: a Java-based graphical user interface for the R package TIMP. J. Stat. Softw. 49, 1–22 (2012).

    Article  Google Scholar 

  44. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article  CAS  Google Scholar 

  45. Lee, C., Yang, W. & Parr, R. G. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).

    Article  CAS  Google Scholar 

  46. Dunning, T. H. Jr . Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023 (1989).

    Article  CAS  Google Scholar 

  47. Dunning, T. H. Jr, Peterson, K. A. & Wilson, A. K. Gaussian basis sets for use in correlated molecular calculations. X. The atoms aluminum through argon revisited. J. Chem. Phys. 114, 9244–9253 (2001).

    Article  CAS  Google Scholar 

  48. Figgen, D., Peterson, K. A., Dolg, M. & Stoll, H. Energy-consistent pseudopotentials and correlation consistent basis sets for the 5d elements Hf–Pt. J. Chem. Phys. 130, 164108 (2009).

    Article  Google Scholar 

  49. Frisch, M. J. et al. Gaussian 09, Revision D.01. (Gaussian, 2013).

  50. Mennucci, B. & Tomasi, J. Continuum solvation models: a new approach to the problem of solute's charge distribution and cavity boundaries. J. Chem. Phys. 106, 5151–5158 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank A. Parker and A. Vlcek for discussions. The authors acknowledge the support of the Engineering and Physical Sciences Research Council (EPSRC), the University of Sheffield and the Science and Technology Facilities Council (STFC). Calculations were performed on the local ‘Jupiter’ cluster of the Theoretical Chemistry Group and the central ‘Iceberg’ cluster of the University of Sheffield. A licence for the OpenEye tools was obtained via the free academic licensing programme.

Author information

Authors and Affiliations

Authors

Contributions

M.D. and J.A.W. conceived and designed the experiments. M.D., I.V.S. and J.A.W. conducted the experiments on a set-up built and operated by M.T., G.M.G. and I.V.S. M.D. analysed the experimental data. P.A.S. synthesized the molecules. T.K. and A.J.H.M.M. devised, performed and analysed the DFT calculations and considered their correspondence to experimental data. M.D. and J.A.W. wrote the paper, with input from all authors.

Corresponding authors

Correspondence to Anthony J. H. M. Meijer or Julia A. Weinstein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1679 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delor, M., Keane, T., Scattergood, P. et al. On the mechanism of vibrational control of light-induced charge transfer in donor–bridge–acceptor assemblies. Nature Chem 7, 689–695 (2015). https://doi.org/10.1038/nchem.2327

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2327

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing