Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A meta-selective C–H borylation directed by a secondary interaction between ligand and substrate


Regioselective C–H bond transformations are potentially the most efficient method for the synthesis of organic molecules. However, the presence of many C–H bonds in organic molecules and the high activation barrier for these reactions make these transformations difficult. Directing groups in the reaction substrate are often used to control regioselectivity, which has been especially successful for the ortho-selective functionalization of aromatic substrates. Here, we describe an iridium-catalysed meta-selective C–H borylation of aromatic compounds using a newly designed catalytic system. The bipyridine-derived ligand that binds iridium contains a pendant urea moiety. A secondary interaction between this urea and a hydrogen-bond acceptor in the substrate places the iridium in close proximity to the meta-C–H bond and thus controls the regioselectivity. 1H NMR studies and control experiments support the participation of hydrogen bonds in inducing regioselectivity. Reversible direction of the catalyst through hydrogen bonds is a versatile concept for regioselective C–H transformations.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: meta-Selective C–H transformations.
Figure 2: Concept of regioselective C–H transformations controlled by a hydrogen-bonding secondary interaction between ligand and substrate.
Figure 3: Mechanistic support for the importance of hydrogen bonding between the catalyst and substrates in controlling regioselectivity.


  1. Kakiuchi, F. & Kochi, T. Transition-metal-catalyzed carbon–carbon bond formation via carbon–hydrogen bond cleavage. Synthesis 3013–3039 (2008).

  2. Chen, X., Engle, K. M., Wang, D.-H. & Yu, J.-Q. Palladium(II)-catalyzed C–H activation/C–C cross-coupling reactions: versatility and practicality. Angew. Chem. Int. Ed. 48, 5094–5115 (2009).

    Article  CAS  Google Scholar 

  3. Colby, D. A., Bergman, R. G. & Ellman, J. A. Rhodium-catalyzed C–C bond formation via heteroatom-directed C–H bond activation. Chem. Rev. 110, 624–655 (2010).

    Article  CAS  Google Scholar 

  4. Kuninobu, Y. & Takai, K. Organic reactions catalyzed by rhenium carbonyl complexes. Chem. Rev. 111, 1938–1953 (2011).

    Article  CAS  Google Scholar 

  5. Rouquet, G. & Chatani, N. Catalytic functionalization of C(sp2)–H and C(sp3)–H bonds using bidentate directing groups. Angew. Chem. Int. Ed. 52, 11726–11743 (2013).

    Article  CAS  Google Scholar 

  6. Zhang, X.-S., Chen, K. & Shi, Z.-J. Transition metal-catalyzed direct nucleophilic addition of C–H bonds to carbon–heteroatom double bonds. Chem. Sci. 5, 2146–2159 (2014).

    Article  CAS  Google Scholar 

  7. Truong, T. & Daugulis, O. Directed functionalization of C–H bonds: now also meta selective. Angew. Chem. Int. Ed. 51, 11677–11679 (2012).

    Article  CAS  Google Scholar 

  8. Cho, J.-Y., Tse, M. K., Holmes, D., Maleczka, R. E. Jr & Smith, M. R. III. Remarkably selective iridium catalysts for the elaboration of aromatic C–H bonds. Science 295, 305–308 (2002).

    Article  CAS  Google Scholar 

  9. Ishiyama, T. et al. Mild iridium-catalyzed borylation of arenes. High turnover numbers, room temperature reactions, and isolation of a potential intermediate. J. Am. Chem. Soc. 124, 390–391 (2002).

    Article  CAS  Google Scholar 

  10. Ishiyama, T., Takagi, J., Hartwig, J. F. & Miyaura, N. A stoichiometric aromatic C–H borylation catalyzed by iridium(I)/2,2′–bipyridine complexes at room temperature. Angew. Chem. Int. Ed. 41, 3056–3058 (2002).

    Article  CAS  Google Scholar 

  11. Murphy, J. M., Liao, X. & Hartwig, J. F. Meta halogenation of 1,3-disubstituted arenes via iridium-catalyzed arene borylation. J. Am. Chem. Soc. 129, 15434–15435 (2007).

    Article  CAS  Google Scholar 

  12. Mkhalid, I. A. I., Barnard, J. H., Marder, T. B., Murphy, J. M. & Hartwig, J. F. C–H activation for the construction of C–B bonds. Chem. Rev. 110, 890–931 (2010).

    Article  CAS  Google Scholar 

  13. Hurst, T. E. et al. Iridium-catalyzed C–H activation versus directed ortho metalation: complementary borylation of aromatics and heteroaromatics. Chem. Eur. J. 16, 8155–8161 (2010).

    Article  CAS  Google Scholar 

  14. Chen, C. & Hartwig, J. F. Rhodium-catalyzed intermolecular C–H silylation of arenes with high steric regiocontrol. Science 343, 853–857 (2014).

    Article  Google Scholar 

  15. Zhang, Y.-H., Shi, B.-F. & Yu, J.-Q. Pd(II)-catalyzed olefination of electron-deficient arenes using 2,6-dialkylpyridine ligands. J. Am. Chem. Soc. 131, 5072–5074 (2009).

    Article  CAS  Google Scholar 

  16. Ye, M., Gao, G.-L. & Yu, J -Q. Ligand-promoted C-3 selective C–H olefination of pyridines with Pd catalysts. J. Am. Chem. Soc. 133, 6964–6967 (2011).

    Article  CAS  Google Scholar 

  17. Ye, M. et al. Ligand-promoted C3-selective arylation of pyridines with Pd catalysts: gram-scale synthesis of (±)-preclamol. J. Am. Chem. Soc. 133, 19090–19093 (2011).

    Article  CAS  Google Scholar 

  18. Saidi, O. et al. Ruthenium-catalyzed meta sulfonation of 2-phenylpyridines. J. Am. Chem. Soc. 133, 19298–19301 (2011).

    Article  CAS  Google Scholar 

  19. Hofmann, N. & Ackermann, L. meta-Selective C–H bond alkylation with secondary alkyl halides. J. Am. Chem. Soc. 135, 5877–5884 (2013).

    Article  CAS  Google Scholar 

  20. Phipps, R. J. & Gaunt, M. J. A meta-selective copper-catalyzed C–H bond arylation. Science 323, 1593–1597 (2009).

    Article  CAS  Google Scholar 

  21. Duong, H. A., Gilligan, R. E., Cooke, M. L., Phipps, R. J. & Gaunt, M. J. Copper(II)-catalyzed meta-selective direct arylation of α-aryl carbonyl compounds. Angew. Chem. Int. Ed. 50, 463–466 (2011).

    Article  CAS  Google Scholar 

  22. Leow, D., Li, G., Mei, T.-S. & Yu, J.-Q. Activation of remote meta-C–H bonds assisted by an end-on template. Nature 486, 518–522 (2012).

    Article  CAS  Google Scholar 

  23. Wan, L., Dastbaravardeh, N., Li, G. & Yu, J.-Q. Cross-coupling of remote meta-C–H bonds directed by a U-shaped template. J. Am. Chem. Soc. 135, 18056–18059 (2013).

    Article  CAS  Google Scholar 

  24. Tang, R.-Y., Li, G. & Yu, J.-Q. Conformation-induced remote meta-C–H activation of amines. Nature 507, 215–220 (2014).

    Article  CAS  Google Scholar 

  25. Das, S., Incarvito, C. D., Crabtree, R. H. & Brudvig, G. W. Molecuar recognition in the selective oxidation of saturated C–H bonds by dimanganese catalyst. Science 312, 1941–1943 (2006).

    Article  CAS  Google Scholar 

  26. Etter, M. C., Urbañczyk-Lipkowska, Z., Zia-Ebrahimi, M. & Panunto, T. W. Hydrogen bond directed cocrystallization and molecular recognition properties of diarylureas. J. Am. Chem. Soc. 112, 8415–8426 (1990).

    Article  CAS  Google Scholar 

  27. Cho, J.-Y., Iverson, C. N. & Smith, M. R. III . Steric and chelate directing effects in aromatic borylation. J. Am. Chem. Soc. 122, 12868–12869 (2000).

    Article  CAS  Google Scholar 

  28. Boller, T. M. et al. Mechanism of the mild functionalization of arenes by diboron reagents catalyzed by iridium complexes. Intermediacy and chemistry of bipyridine-ligated iridium trisboryl complexes. J. Am. Chem. Soc. 127, 14263–14278 (2005).

    Article  CAS  Google Scholar 

  29. Asakura, T. 1H and 13C NMR studies on the interaction between N-acetyl-L-alanine methylamide and trifluoroacetic acid. Makromol. Chem. 182, 1135–1145 (1981).

    Article  CAS  Google Scholar 

  30. Lippert, K. M. et al. Hydrogen-bonding thiourea organocatalysts: the privileged 3,5-bis(trifluoromethyl)phenyl group. Eur. J. Org. Chem. 5919–5927 (2012).

Download references


This work was supported in part by ERATO from the Japan Science and Technology Agency and by a Grant-in-Aid for Scientific Research (B) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations



Y.K. conceived and designed the experiments and ligands, and prepared the manuscript. H.I. and M.N. performed the experiments. Y.K. and M.K. directed the project. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Yoichiro Kuninobu or Motomu Kanai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3539 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kuninobu, Y., Ida, H., Nishi, M. et al. A meta-selective C–H borylation directed by a secondary interaction between ligand and substrate. Nature Chem 7, 712–717 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing