Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Photoinduced reversible switching of porosity in molecular crystals based on star-shaped azobenzene tetramers

Abstract

The development of solid materials that can be reversibly interconverted by light between forms with different physico-chemical properties is of great interest for separation, catalysis, optoelectronics, holography, mechanical actuation and solar energy conversion. Here, we describe a series of shape-persistent azobenzene tetramers that form porous molecular crystals in their E-configuration, the porosity of which can be tuned by changing the peripheral substituents on the molecule. Efficient EZ photoisomerization of the azobenzene units takes place in the solid state and converts the crystals into a non-porous amorphous melt phase. Crystallinity and porosity are restored upon ZE isomerization promoted by visible light irradiation or heating. We demonstrate that the photoisomerization enables reversible on/off switching of optical properties such as birefringence as well as the capture of CO2 from the gas phase. The linear design, structural versatility and synthetic accessibility make this new family of materials potentially interesting for technological applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Star-shaped azobenzene tetramers and their photochemical transformations.
Figure 2: Structural properties of E4-1c in the crystalline state.
Figure 3: Observation of the photoisomerization of 1c in a thin solid film by XRPD and UV-visible absorption spectroscopy.
Figure 4: Effect of photochemical and thermal stimulation on the 1c crystals.
Figure 5: Switching of gas adsorption properties and observation of CO2/N2 selectivity.

Similar content being viewed by others

References

  1. Kobatake, S., Takami, S., Muto, H., Ishikawa, T. & Irie, M. Rapid and reversible shape changes of molecular crystals on photoirradiation. Nature 446, 778–781 (2007).

    Article  CAS  Google Scholar 

  2. Szymanski, W., Beierle, J. M., Kistemaker, H. A. V., Velema, W. A. & Feringa, B. L. Reversible photocontrol of biological systems by the incorporation of molecular photoswitches. Chem. Rev. 113, 6114–6178 (2013).

    Article  CAS  Google Scholar 

  3. Bandara, H. M. D. & Burdette, S. C. Photoisomerization in different classes of azobenzene. Chem. Soc. Rev. 41, 1809–1825 (2012).

    Article  CAS  Google Scholar 

  4. Bruder, F-K., Hagen, R., Rölle, T., Weiser, M-S. & Fäcke, T. From the surface to volume: concepts for the next generation of optical-holographic data-storage materials. Angew. Chem. Int. Ed. 50, 4552–4573 (2011).

    Article  CAS  Google Scholar 

  5. Raimondo, C. et al. Optically switchable organic field-effect transistors based on photoresponsive gold nanoparticles blended with poly(3-hexylthiophene). Proc. Natl Acad. Sci. USA 109, 12375–12380 (2012).

    Article  CAS  Google Scholar 

  6. Venkataramani, S. et al. Magnetic bistability of molecules in homogeneous solution at room temperature. Science 331, 445–448 (2011).

    Article  CAS  Google Scholar 

  7. Ragazzon, G., Baroncini, M., Silvi, S., Venturi, M. & Credi, A. Light-powered autonomous and directional molecular motion based on a dissipative self-assembling system. Nature Nanotech. 10, 70–75 (2015).

    Article  CAS  Google Scholar 

  8. Stoll, R. S. & Hecht, S. Artificial light-gated catalyst systems. Angew. Chem. Int. Ed. 49, 5054–5075 (2010).

    Article  CAS  Google Scholar 

  9. Kausar, A., Nagano, H., Ogata, T., Nonaka, T. & Kurihara, S. Photocontrolled translational motion of a microscale solid object on azobenzene-doped liquid-crystalline films. Angew. Chem. Int. Ed. 48, 2144–2147 (2009).

    Article  CAS  Google Scholar 

  10. Yanai, N. et al. Guest-to-host transmission of structural changes for stimuli-responsive adsorption property. J. Am. Chem. Soc. 134, 4501–4504 (2012).

    Article  CAS  Google Scholar 

  11. Brown, J. W. et al. Photophysical pore control in an azobenzene-containing metal–organic framework. Chem. Sci. 4, 2858–2864 (2013).

    Article  CAS  Google Scholar 

  12. Kucharski, T. J. et al. Templated assembly of photoswitches significantly increases the energy-storage capacity of solar thermal fuels. Nature Chem. 6, 441–447 (2014).

    Article  CAS  Google Scholar 

  13. Velema, W. et al. Optical control of antibacterial activity. Nature Chem. 5, 924–928 (2013).

    Article  CAS  Google Scholar 

  14. Naito, T., Horie, K. & Mita, I. Photochemistry in polymer solids. 11. The effects of the size of reaction groups and the mode of photoisomerization on photochromic reactions in polycarbonate film. Macromolecules 24, 2907–2911 (1991).

    Article  CAS  Google Scholar 

  15. Evans, R. et al. The generic enhancement of photochromic dye switching speeds in a rigid polymer matrix. Nature Mater. 4, 249–253 (2005).

    Article  CAS  Google Scholar 

  16. Tsuda, M. & Kuratani, K. Isomerization of cis-azobenzene in the solid phase. Bull. Chem. Soc. Jpn 37, 1284–1288 (1964).

    Article  CAS  Google Scholar 

  17. Bushuyev, O. S., Tomberg, A., Friščić, T. & Barrett, C. J. Shaping crystals with light: crystal-to-crystal isomerization and photomechanical effect in fluorinated azobenzenes. J. Am. Chem. Soc. 135, 12556–12559 (2013).

    Article  CAS  Google Scholar 

  18. Bléger, D., Yu, Z. & Hecht, S. Toward optomechanics: maximizing the photodeformation of individual molecules. Chem. Commun. 47, 12260–12266 (2011).

    Article  Google Scholar 

  19. Lee, S. et al. Stimulus-responsive azobenzene supramolecules: fibers, gels, and hollow spheres. Langmuir 29, 5869–5877 (2013).

    Article  CAS  Google Scholar 

  20. Yu, Y., Maeda, T., Mamiya, J-I. & Ikeda, T. Photomechanical effects of ferroelectric liquid-crystalline elastomers containing azobenzene chromophores. Angew. Chem. Int. Ed. 46, 881–883 (2007).

    Article  CAS  Google Scholar 

  21. Norikane, Y., Hirai, Y. & Yoshida, M. Photoinduced isothermal phase transitions of liquid-crystalline macrocyclic azobenzenes. Chem. Commun. 47, 1770–1772 (2011).

    Article  CAS  Google Scholar 

  22. Akiyama, H. & Yoshida, M. Photochemically reversible liquefaction and solidification of single compounds based on a sugar alcohol scaffold with multi azo-arms. Adv. Mater. 24, 2353–2356 (2012).

    Article  CAS  Google Scholar 

  23. Uchida, E. et al. Control of the orientation and photoinduced phase transitions of macrocyclic azobenzene. Chem. Eur. J. 19, 17391–17397 (2013).

    Article  CAS  Google Scholar 

  24. Hoshino, M. et al. Crystal melting by light: X-ray crystal structure analysis of an azo crystal showing photoinduced crystal-melt transition. J. Am. Chem. Soc. 136, 9158–9164 (2014).

    Article  CAS  Google Scholar 

  25. Nakano, H., Seki, S. & Kageyama, H. Photoinduced vitrification near the surfaces of single crystals of azobenzene-based molecular materials with glass-forming ability. Phys. Chem. Chem. Phys. 12, 7772–7774 (2010).

    Article  CAS  Google Scholar 

  26. Yan, X., Wang, F., Zheng, B. & Huang, F. Stimuli-responsive supramolecular polymeric materials. Chem. Soc. Rev. 41, 6042–6065 (2012).

    Article  CAS  Google Scholar 

  27. Harada, A., Takashima, Y. & Nakahata, M. Supramolecular polymeric materials via cyclodextrin–guest interactions. Acc. Chem. Res. 47, 2128–2140 (2014).

    Article  CAS  Google Scholar 

  28. Ichimura, K. Reversible photoisomerisability and particle size changes of mill-dispersed azobenzene crystals in water. Chem. Commun. 45, 1496–1498 (2009).

    Article  Google Scholar 

  29. Brown, J. W. et al. Photophysical pore control in an azobenzene-containing metal–organic framework. Chem. Sci. 4, 2858 (2013).

    Article  CAS  Google Scholar 

  30. Patel, H. et al. Unprecedented high-temperature CO2 selectivity in N2-phobic nanoporous covalent organic polymers. Nature Commun. 4, 1357 (2013).

    Article  Google Scholar 

  31. Lyndon, R. et al. Dynamic photo-switching in metal–organic frameworks as a route to low-energy carbon dioxide capture and release. Angew. Chem. Int. Ed. 52, 3695–3698 (2013).

    Article  CAS  Google Scholar 

  32. Park, J., Sun, L-B., Chen, Y-P., Perry, Z. & Zhou, H-C. Azobenzene-functionalized metal–organic polyhedra for the optically responsive capture and release of guest molecules. Angew. Chem. Int. Ed. 53, 5842–5846 (2014).

    Article  CAS  Google Scholar 

  33. Patel, H. et al. Directing the structural features of N2-phobic nanoporous covalent organic polymers for CO2 capture and separation. Chem. Eur. J. 20, 772–780 (2014).

    Article  CAS  Google Scholar 

  34. Koshima, H., Ojima, N. & Uchimoto, H. Mechanical motion of azobenzene crystals upon photoirradiation. J. Am. Chem. Soc. 131, 6890–6891 (2009).

    Article  CAS  Google Scholar 

  35. Koshima, H. & Ojima, N. Photomechanical bending of 4-aminoazobenzene crystals. Dyes Pigm. 92, 798–801 (2012).

    Article  CAS  Google Scholar 

  36. Bushuyev, O. S., Singleton, T. & Barrett, C. J. Fast, reversible, and general photomechanical motion in single crystals of various azo compounds using visible light. Adv. Mater. 25, 1796–1800 (2013).

    Article  CAS  Google Scholar 

  37. Holst, J. R., Trewin, A. & Cooper, A. I. Porous organic molecules. Nature Chem. 2, 915–920 (2010).

    Article  CAS  Google Scholar 

  38. McKeown, N. B. Nanoporous molecular crystals. J. Mater. Chem. 20, 10588–10597 (2010).

    Article  CAS  Google Scholar 

  39. Sozzani, P., Bracco, S., Comotti, A., Ferretti, L. & Simonutti, R. Methane and carbon dioxide storage in a porous van der Waals crystal. Angew. Chem. Int. Ed. 44, 1816–1820 (2005).

    Article  CAS  Google Scholar 

  40. Mastalerz, M. & Oppel, I. M. Rational construction of an extrinsic porous molecular crystal with an extraordinary high specific surface area. Angew. Chem. Int. Ed. 51, 5252–5255 (2012).

    Article  CAS  Google Scholar 

  41. Zhou, H-C. & Kitagawa, S. Metal–organic frameworks (MOFs). Chem. Soc. Rev. 43, 5415–5418 (2014).

    Article  CAS  Google Scholar 

  42. Feng, X., Ding, X. & Jiang, D. Covalent organic frameworks. Chem. Soc. Rev. 41, 6010–6022 (2012).

    Article  CAS  Google Scholar 

  43. Aujard, I. et al. Tetrahedral Onsager crosses for solubility improvement and crystallization bypass. J. Am. Chem. Soc. 123, 8177–8188 (2001).

    Article  CAS  Google Scholar 

  44. Uyama, A. et al. Reversible photocontrol of surface wettability between hydrophilic and superhydrophobic surfaces on an asymmetric diarylethene solid surface. Langmuir 27, 6395–6400 (2011).

    Article  CAS  Google Scholar 

  45. Palmer, B. et al. X-ray birefringence imaging. Science 344, 1013–1016 (2014).

    Article  CAS  Google Scholar 

  46. Luo, F. et al. Photoswitching CO2 capture and release in a photochromic diarylethene metal–organic framework. Angew. Chem. Int. Ed. 53, 9298–9301 (2014).

    Article  CAS  Google Scholar 

  47. Thallapally, P. K., Dalgarno, S. J. & Atwood, J. L. Frustrated organic solids display unexpected gas sorption. J. Am. Chem. Soc. 128, 15060–15061 (2006).

    Article  CAS  Google Scholar 

  48. Jones, J. T. et al. On–off porosity switching in a molecular organic solid. Angew. Chem. Int. Ed. 50, 749–753 (2011).

    Article  CAS  Google Scholar 

  49. Comotti, A. et al. Porous dipeptide crystals as selective CO2 adsorbents: experimental isotherms vs. grand canonical Monte Carlo simulations and MAS NMR spectroscopy. CrystEngComm. 15, 1503–1507 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Ministero dell'Istruzione, Università e Ricerca (PRIN 2010CX2TLM ‘InfoChem’ and FIRB 2010RBAP11C58Y ‘Nanosolar’), Ministero degli Affari Esteri e della Cooperazione Internazionale (DGSP n. 0075740), Fondazione Cariplo 2012-0921 and the University of Bologna. M.B. thanks R. Zamboni (ISOF-CNR Bologna) for support.

Author information

Authors and Affiliations

Authors

Contributions

M.B., A.C. and An.C. conceived the project. M.B. and T.M.H. synthesized and characterized the compounds. S.d'A. and F.G. performed crystal growth experiments and X-ray diffraction studies. S.S. and M.B. carried out the spectroscopic, photochemical and microscopy experiments. I.B., An.C. and P.S. performed gas adsorption experiments, solid-state NMR spectra and preparation and characterization of the polymorphs. G.B., P.C., M.V. and all other authors analysed the data. A.C. wrote the paper.

Corresponding authors

Correspondence to Massimo Baroncini, Angiolina Comotti, Fabrizia Grepioni or Alberto Credi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 9484 kb)

Supplementary information

Crystallographic data for compound E4-1a. (CIF 193 kb)

Supplementary information

Crystallographic data for compound E4-1b Form I. (CIF 16 kb)

Supplementary information

Crystallographic data for compound E4-1b Form II. (CIF 218 kb)

Supplementary information

Crystallographic data for compound E4-1c. (CIF 232 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baroncini, M., d'Agostino, S., Bergamini, G. et al. Photoinduced reversible switching of porosity in molecular crystals based on star-shaped azobenzene tetramers. Nature Chem 7, 634–640 (2015). https://doi.org/10.1038/nchem.2304

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2304

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing