Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synthesis of marmycin A and investigation into its cellular activity

Abstract

Anthracyclines such as doxorubicin are used extensively in the treatment of cancers. Anthraquinone-related angucyclines also exhibit antiproliferative properties and have been proposed to operate via similar mechanisms, including direct genome targeting. Here, we report the chemical synthesis of marmycin A and the study of its cellular activity. The aromatic core was constructed by means of a one-pot multistep reaction comprising a regioselective Diels–Alder cycloaddition, and the complex sugar backbone was introduced through a copper-catalysed Ullmann cross-coupling, followed by a challenging Friedel–Crafts cyclization. Remarkably, fluorescence microscopy revealed that marmycin A does not target the nucleus but instead accumulates in lysosomes, thereby promoting cell death independently of genome targeting. Furthermore, a synthetic dimer of marmycin A and the lysosome-targeting agent artesunate exhibited a synergistic activity against the invasive MDA-MB-231 cancer cell line. These findings shed light on the elusive pathways through which anthraquinone derivatives act in cells, pointing towards unanticipated biological and therapeutic applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Anthraquinone-containing natural products.
Figure 2: Chemical synthesis of the marmycins.
Figure 3: Marmycin A kills human cancer cells independently of genome targeting.
Figure 4: Marmycin A accumulates in the lysosomes and triggers programmed cell death.
Figure 5: Antiproliferative mechanisms of anthraquinone-containing drugs.

Similar content being viewed by others

References

  1. Kharel, M. K. et al. Angucyclines: biosynthesis, mode-of-action, new natural products, and synthesis. Nat. Prod. Rep. 29, 264–325 (2012).

    Article  CAS  Google Scholar 

  2. Martin, G. D. A. et al. Marmycins A and B, cytotoxic pentacyclic C-glycosides from a marine sediment-derived actinomycete related to the genus Streptomyces. J. Nat. Prod. 70, 1406–1409 (2007).

    Article  CAS  Google Scholar 

  3. Cottreau, K. M. et al. Diverse DNA-cleaving capacities of the jadomycins through precursor-directed biosynthesis. Org. Lett. 12, 1172–1175 (2010).

    Article  CAS  Google Scholar 

  4. Sun, D., Hansen, M. & Hurley, L. Molecular basis for the DNA sequence specificity of the pluramycins. A novel mechanism involving groove interactions transmitted through the helix via intercalation to achieve sequence selectivity at the covalent bonding step. J. Am. Chem. Soc. 117, 2430–2440 (1995).

    Article  CAS  Google Scholar 

  5. Hansen, M., Yun, S. & Hurley, L. Hedamycin intercalates the DNA helix and, through carbohydrate-mediated recognition in the minor groove, directs N7-alkylation of guanine in the major groove in a sequence-specific manner. Chem. Biol. 2, 229–240 (1995).

    Article  CAS  Google Scholar 

  6. Singal, P. K. & Iliskovic, N. Doxorubicin-induced cardiomyopathy. N. Engl. J. Med. 339, 900–905 (1998).

    Article  CAS  Google Scholar 

  7. Yang, F., Kemp, C. J. & Henikoff, S. Doxorubicin enhances nucleosome turnover around promoters. Curr. Biol. 23, 782–787 (2013).

    Article  CAS  Google Scholar 

  8. Pang, B. et al. Drug-induced histone eviction from open chromatin contributes to the chemotherapeutic effects of doxorubicin. Nature Commun. 4, 1908 (2013).

    Article  Google Scholar 

  9. Pigram, W. J., Fuller, W. & Hamilton, L. D. Stereochemistry of intercalation: interaction of daunomycin with DNA. Nature 235, 17–19 (1972).

    Article  CAS  Google Scholar 

  10. Nitiss, J. L. Targeting DNA topoisomerase II in cancer chemotherapy. Nature Rev. Cancer 9, 338–350 (2009).

    Article  CAS  Google Scholar 

  11. Korynevska, A. et al. Mechanisms underlying the anticancer activities of the angucycline landomycin E. Biochem. Pharmacol. 74, 1713–1726 (2007).

    Article  CAS  Google Scholar 

  12. Müller, S., Kumari, S., Rodriguez, R. & Balasubramanian, S. Small-molecule-mediated G-quadruplex isolation from human cells. Nature Chem. 2, 1095–1098 (2010).

    Article  Google Scholar 

  13. Koirala, D. et al. A single-molecule platform for investigation of interactions between G-quadruplexes and small-molecule ligands. Nature Chem. 3, 782–787 (2011).

    Article  CAS  Google Scholar 

  14. Rodriguez, R. et al. Small-molecule-induced DNA damage identifies alternative DNA structures in human genes. Nature Chem. Biol. 8, 301–310 (2012).

    Article  CAS  Google Scholar 

  15. Rodriguez, R. & Miller, K. M. Unravelling the genomic targets of small molecules using high-throughput sequencing. Nature Rev. Genet. 77, 5439–5444 (2012).

    Google Scholar 

  16. Yadav, J. S. et al. InBr3-catalyzed cyclization of glycals with aryl amines. Angew. Chem. Int. Ed. 42, 5198–5201 (2003).

    Article  CAS  Google Scholar 

  17. Ding, C. et al. Synthesis study on marmycin A: preparation of the C3′-desmethyl analogues. J. Org. Chem. 74, 6111–6119 (2009).

    Article  CAS  Google Scholar 

  18. Maugel, N. & Snider, B. B. Efficient synthesis of the tetracyclic aminoquinone moiety of marmycin A. Org. Lett. 11, 4926–4929 (2009).

    Article  CAS  Google Scholar 

  19. Bourcet, E., Bröhmer, M. C., Nieger, M. & Bräse, S. Synthetic studies towards marmycins A and B: development of the vinylogous aldol–aza-Michael domino reaction. Org. Biomol. Chem. 9, 3136–3138 (2011).

    Article  CAS  Google Scholar 

  20. Mendoza, A., Ishihara, Y. & Baran, P. S. Scalable enantioselective total synthesis of taxanes. Nature Chem. 4, 21–25 (2012).

    Article  CAS  Google Scholar 

  21. Rodriguez, R., Chapelon, A.-S., Ollivier, C. & Santelli, M. Stereoselective synthesis of CD-ring precursors of vitamin D derivatives. Tetrahedron 65, 7001–7015 (2009).

    Article  CAS  Google Scholar 

  22. Rodriguez, R., Adlington, R. M., Moses, J. E., Cowley, A. & Baldwin, J. E. A new and efficient method for o-quinone methide intermediate generation: application to the biomimetic synthesis of (±)-alboatrin. Org. Lett. 6, 3617–3619 (2004).

    Article  CAS  Google Scholar 

  23. Rodriguez, R. et al. Total synthesis of cyercene A and the biomimetic synthesis of (±)-9,10-deoxytridachione and (±)-ocellapyrone A. Tetrahedron 63, 4500–4509 (2007).

    Article  CAS  Google Scholar 

  24. Eade, S. J. et al. Biomimetic synthesis of pyrone-derived natural products: exploring chemical pathways from a unique polyketide precursor. J. Org. Chem. 73, 4830–4839 (2008).

    Article  CAS  Google Scholar 

  25. Heinzman, S. W. & Grunwell, J. R. Regiospecific synthesis of bromojuglone derivatives. Tetrahedron Lett. 21, 4305–4308 (1980).

    Article  CAS  Google Scholar 

  26. Carreño, M. C., Urbano, A. & Di Vitta, C. Enantioselective Diels–Alder approach to C-3-oxygenated angucyclinones from (SS)-2-(p-tolylsulfinyl)-1,4-naphthoquinone. Chem. Eur. J. 6, 906–913 (2000).

    Article  Google Scholar 

  27. Brimacombe, J. S., Hanna, R., Saeed, M. S. & Tucker, L. C. N. Convenient syntheses of L-digitoxose, L-cymarose, and L-ristosamine. J. Chem. Soc. 2583–2587 (1982).

  28. Greven, R., Jütten, P. & Scharf, H.-D. A new stereoselective route to branched-chain nitro and amino sugars: synthesis of both enantiomers of decilonitrose and avidinosamine. J. Org. Chem. 58, 3742–3747 (1993).

    Article  CAS  Google Scholar 

  29. Baran, P. S., Maimone, T. J. & Richter, J. M. Total synthesis of marine natural products without using protecting groups. Nature 446, 404–408 (2007).

    Article  CAS  Google Scholar 

  30. Klemer, A. & Rodemeyer, G. Simple synthesis of methyl 4,6-ortho-benzylidene-2-desoxy-alpha-D-erythro-hexopyranosid-3-ulose. Chem. Ber. 107, 2612–2614 (1974).

    Article  CAS  Google Scholar 

  31. Wolfe, J. P., Wagaw, S., Marcoux, J.-F. & Buchwald, S. L. Rational development of practical catalysts for aromatic carbon–nitrogen bond formation. Acc. Chem. Res. 31, 805–818 (1998).

    Article  CAS  Google Scholar 

  32. Sambiagio, C., Marsden, S. P., Blacker, A. J. & McGowan, P. C. Copper catalysed Ullmann type chemistry: from mechanistic aspects to modern development. Chem. Soc. Rev. 43, 3525–3550 (2014).

    Article  CAS  Google Scholar 

  33. Larrieu, D., Britton, S., Demir, M., Rodriguez, R. & Jackson, S. P. Chemical inhibition of NAT10 corrects defects of laminopathic cells. Science 344, 527–532 (2014).

    Article  CAS  Google Scholar 

  34. Enari, M. et al. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391, 43–50 (1998).

    Article  CAS  Google Scholar 

  35. Eskelinen, E.-L., Tanaka, Y. & Saftig, P. At the acidic edge: emerging functions for lysosomal membrane proteins. Trends Cell Biol. 13, 137–145 (2003).

    Article  CAS  Google Scholar 

  36. Huynh, K. K. et al. LAMP proteins are required for fusion of lysosomes with phagosomes. EMBO J. 26, 313–324 (2007).

    Article  CAS  Google Scholar 

  37. Klionsky, D. J. et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8, 445–544 (2012).

    Article  CAS  Google Scholar 

  38. Kågedal, K., Zhao, M., Svensson, I. & Brunk, U. T. Sphingosine-induced apoptosis is dependent on lysosomal proteases. Biochem. J. 359, 335–343 (2001).

    Article  Google Scholar 

  39. Boya, P. & Kroemer, G. Lysosomal membrane permeabilization in cell death. Oncogene 27, 6434–6451 (2008).

    Article  CAS  Google Scholar 

  40. Galluzzi, L., Bravo-San Pedro, J. M. & Kroemer, G. Organelle-specific initiation of cell death. Nature Cell Biol. 16, 728–736 (2014).

    Article  CAS  Google Scholar 

  41. Li, H., Zhu, H., Xu, C.-J. & Yuan, J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94, 491–501 (1998).

    Article  CAS  Google Scholar 

  42. Chipuk, J. E., Bouchier-Hayes, L. & Green, D. R. Mitochondrial outer membrane permeabilization during apoptosis: the innocent bystander scenario. Cell Death Differ. 13, 1396–1402 (2006).

    Article  CAS  Google Scholar 

  43. Hamacher-Brady, A. et al. Artesunate activates mitochondrial apoptosis in breast cancer cells via iron-catalyzed lysosomal reactive oxygen species production. J. Biol. Chem. 286, 6587–6601 (2011).

    Article  CAS  Google Scholar 

  44. Ziegler, S., Pries, V., Hedberg, C. & Waldmann, H. Target identification for small bioactive molecules: finding the needle in the haystack. Angew. Chem. Int. Ed. 52, 2744–2792 (2013).

    Article  CAS  Google Scholar 

  45. Li, Y. et al. Amplification of LAPTM4B and YWHAZ contributes to chemotherapy resistance and recurrence of breast cancer. Nature Med. 16, 214–218 (2010).

    Article  Google Scholar 

  46. Kreuzaler, P. & Watson, C. J. Killing a cancer: what are the alternatives? Nature Rev. Cancer 12, 411–424 (2012).

    Article  CAS  Google Scholar 

  47. Shiraishi, N., Akiyama, S.-I., Kobayashi, M. & Kuwano, M. Lysosomotropic agents reverse multiple drug resistance in human cancer cells. Cancer Lett. 30, 251–259 (1986).

    Article  CAS  Google Scholar 

  48. Zamora, J. M. & Beck, W. T. Chloroquine enhancement of anticancer drug cytotoxicity in multiple drug resistant human leukemic cells. Biochem. Pharmacol. 35, 4303–4310 (1986).

    Article  CAS  Google Scholar 

  49. Vezmar, M. & Georges, E. Reversal of MRP-mediated doxorubicin resistance with quinoline-based drugs. Biochem. Pharmacol. 59, 1245–1252 (2000).

    Article  CAS  Google Scholar 

  50. Savarino, A., Lucia, M. B., Giordano, F. & Cauda, R. Risks and benefits of chloroquine use in anticancer strategies. Lancet Oncol. 7, 792–793 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the CNRS for funding, and the Imagif Cell Biology Unit, J.-F. Gallard and F. Blanchard for assistance with cell imaging, NMR spectroscopy and X-ray crystallography, respectively. R.R. thanks J.A. Yeoman, S. Müller, J.E. Moses, S.L. Buchwald, L. Johannes, M. Mehrpour and members of R.R.’s laboratory for discussions and proofreading of this manuscript. Research in R.R.’s laboratory is supported by the European Research Council (grant no. 647973), the Fondation pour la Recherche Médicale (grant no. AJE20141031486), the Emergence Ville de Paris Program and the Ligue Nationale Contre le Cancer.

Author information

Authors and Affiliations

Authors

Contributions

R.R., with contributions from T.C., G.M. and M.M., conceived and designed the experiments. T.C., with assistance from F.G., synthesized the marmycins and artesumycin. T.T.M. with contribution from T.C. performed proliferation assays, fluorescence-activated cell sorting, western blotting and cellular imaging. R.R., G.M. and M.M. supervised the research. All the authors analysed the data. R.R. wrote the manuscript. All the authors commented on the manuscript. T.T.M. and F.G. contributed equally to this work.

Corresponding author

Correspondence to Raphaël Rodriguez.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3569 kb)

Supplementary information

Crystallographic data for compound 1. (CIF 443 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cañeque, T., Gomes, F., Mai, T. et al. Synthesis of marmycin A and investigation into its cellular activity. Nature Chem 7, 744–751 (2015). https://doi.org/10.1038/nchem.2302

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2302

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing