Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

On-surface generation and imaging of arynes by atomic force microscopy

Abstract

Reactive intermediates are involved in many chemical transformations. However, their characterization is a great challenge because of their short lifetimes and high reactivities. Arynes, formally derived from arenes by the removal of two hydrogen atoms from adjacent carbon atoms, are prominent reactive intermediates that have been hypothesized for more than a century. Their rich chemistry enables a widespread use in synthetic chemistry, as they are advantageous building blocks for the construction of polycyclic compounds that contain aromatic rings. Here, we demonstrate the generation and characterization of individual polycyclic aryne molecules on an ultrathin insulating film by means of low-temperature scanning tunnelling microscopy and atomic force microscopy. Bond-order analysis suggests that a cumulene resonance structure is the dominant one, and the aryne reactivity is preserved at cryogenic temperatures. Our results provide important insights into the chemistry of these elusive intermediates and their potential application in the field of on-surface synthesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemical transformation studied on a surface.
Figure 2: STM imaging and the on-surface generation of arynes on NaCl(2Ml)/Cu(111).
Figure 3: High-resolution AFM imaging of the reaction compounds.
Figure 4: Structure and bond-length evaluation of aryne and NP molecules.
Figure 5: On-surface chemistry of an aryne.

Similar content being viewed by others

References

  1. Stoermer, R. & Kahlert, B. Über das 1- und 2-Brom-cumaron. Ber. Dtsch. Chem. Ges. 35, 1633–1640 (1902).

    Article  CAS  Google Scholar 

  2. Wenk, H. H., Winkler, M. & Sander, W. One century of aryne chemistry. Angew. Chem. Int. Ed. 42, 502–528 (2003).

    Article  CAS  Google Scholar 

  3. Roberts, J. D., Simmons, H. E., Carlsmith, L. A. & Vaughan, C. W. Rearrangement in the reaction of chlorobenzene-1-14C with potassium amide. J. Am. Chem. Soc. 75, 3290–3291 (1953).

    Article  CAS  Google Scholar 

  4. Kitamura, T. Synthetic methods for the generation and preparative application of benzyne. Aust. J. Chem. 63, 987–1001 (2010).

    Article  CAS  Google Scholar 

  5. Hoffmann, R. Dehydrobenzene and Cycloalkynes (Academic Press, 1967).

    Google Scholar 

  6. Pellissier, H. & Santelli, M. The use of arynes in organic synthesis. Tetrahedron 59, 701–730 (2003).

    Article  CAS  Google Scholar 

  7. Tadross, P. M. & Stoltz, B. M. A comprehensive history of arynes in natural product total synthesis. Chem. Rev. 112, 3550–3577 (2012).

    Article  CAS  Google Scholar 

  8. Pérez, D., Peña, D. & Guitián, E. Aryne cycloaddition reactions in the synthesis of large polycyclic aromatic compounds. Eur. J. Org. Chem. 2013, 5981–6013 (2013).

    Article  Google Scholar 

  9. Xiao, J. et al. Synthesis and structure characterization of a stable nonatwistacene. Angew. Chem. Int. Ed. 51, 6094–6098 (2012).

    Article  CAS  Google Scholar 

  10. Schuler, B. et al. From perylene to a 22-ring aromatic hydrocarbon in one-pot. Angew. Chem. Int. Ed. 53, 9004–9006 (2014).

    Article  CAS  Google Scholar 

  11. Goetz, A. & Garg, N. Regioselective reactions of 3,4-pyridynes enabled by the aryne distortion model. Nature Chem. 5, 54–60 (2012).

    Article  Google Scholar 

  12. Zhong, X. et al. Aryne cycloaddition: highly efficient chemical modification of graphene. Chem. Commun. 46, 7340–7342 (2010).

    Article  CAS  Google Scholar 

  13. Criado, A. et al. Efficient cycloaddition of arynes to carbon nanotubes under microwave irradiation. Carbon 63, 140–148 (2013).

    Article  CAS  Google Scholar 

  14. Hoye, T. R., Baire, B., Niu, D., Willoughby, P. H. & Woods, B. P. The hexadehydro-Diels–Alder reaction. Nature 490, 208–212 (2012).

    Article  CAS  Google Scholar 

  15. Hoffmann, R. W. & Suzuki, K. A ‘hot, energized’ benzyne. Angew. Chem. Int. Ed. 52, 2655–2656 (2013).

    Article  CAS  Google Scholar 

  16. Niu, D., Willoughby, P. H., Woods, B. P., Baire, B. & Hoye, T. R. Alkane desaturation by concerted double hydrogen atom transfer to benzyne. Nature 501, 531–534 (2013).

    Article  CAS  Google Scholar 

  17. Niu, D. & Hoye, T. The aromatic ene reaction. Nature Chem. 6, 34–40 (2014).

    Article  CAS  Google Scholar 

  18. Godfrey, P. D. Microwave spectroscopy of benzyne. Aust. J. Chem. 63, 1061–1065 (2010).

    Article  CAS  Google Scholar 

  19. Radziszewski, J. G., Hess, B. A. & Zahradnik, R. Infrared spectrum of o-benzyne: experiment and theory. J. Am. Chem. Soc. 114, 52–57 (1992).

    Article  CAS  Google Scholar 

  20. Warmuth, R. o-Benzyne strained alkyne or cumulene? NMR characterization in a molecular container. Angew. Chem. Int. Ed. Engl. 36, 1347–1350 (1997).

    Article  CAS  Google Scholar 

  21. Jiao, H., Schleyer, P. V. R., Warmuth, R., Houk, K. N. & Beno, B. R. Theoretical studies of the structure, aromaticity, and magnetic properties of o-benzyne. Angew. Chem. Int. Ed. Engl. 36, 2761–2764 (1997).

    Article  CAS  Google Scholar 

  22. Hla, S.-W., Bartels, L., Meyer, G. & Rieder, K.-H. Inducing all steps of a chemical reaction with the scanning tunneling microscope tip: towards single molecule engineering. Phys. Rev. Lett. 85, 2777–2780 (2000).

    Article  CAS  Google Scholar 

  23. Zhao, A. et al. Controlling the Kondo effect of an adsorbed magnetic ion through its chemical bonding. Science 309, 1542–1544 (2005).

    Article  CAS  Google Scholar 

  24. Repp, J., Meyer, G., Paavilainen, S., Olsson, F. E. & Persson, M. Imaging bond formation between a gold atom and pentacene on an insulating surface. Science 312, 1196–1199 (2006).

    Article  CAS  Google Scholar 

  25. Gross, L., Mohn, F., Moll, N., Liljeroth, P. & Meyer, G. The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110–1114 (2009).

    Article  CAS  Google Scholar 

  26. Mohn, F. et al. Reversible bond formation in a gold-atom–organic-molecule complex as a molecular switch. Phys. Rev. Lett. 105, 266102 (2010).

    Article  Google Scholar 

  27. Zhang, J. et al. Real-space identification of intermolecular bonding with atomic force microscopy. Science 342, 611–614 (2013).

    Article  CAS  Google Scholar 

  28. De Oteyza, D. G. et al. Direct imaging of covalent bond structure in single-molecule chemical reactions. Science 340, 1434–1437 (2013).

    Article  CAS  Google Scholar 

  29. Riss, A. et al. Local electronic and chemical structure of oligo-acetylene derivatives formed through radical cyclizations at a surface. Nano Lett. 14, 2251–2255 (2014).

    Article  CAS  Google Scholar 

  30. Mohn, F., Schuler, B., Gross, L. & Meyer, G. Different tips for high-resolution atomic force microscopy and scanning tunneling microscopy of single molecules. Appl. Phys. Lett. 102, 073109 (2013).

    Article  Google Scholar 

  31. Dienel, T. et al. Dehalogenation and coupling of a polycyclic hydrocarbon on an atomically thin insulator. ACS Nano 8, 6571–6579 (2014).

    Article  CAS  Google Scholar 

  32. Huang, K., Leung, L., Lim, T., Ning, Z. & Polanyi, J. C. Vibrational excitation induces double reaction. ACS Nano 8, 12468–12475 (2014).

    Article  CAS  Google Scholar 

  33. Chiang, C.-L., Xu, C., Han, Z. & Ho, W. Real-space imaging of molecular structure and chemical bonding by single-molecule inelastic tunneling probe. Science 344, 885–888 (2014).

    Article  CAS  Google Scholar 

  34. Gross, L. et al. Bond-order discrimination by atomic force microscopy. Science 337, 1326–1329 (2012).

    Article  CAS  Google Scholar 

  35. Qiu, X. H., Nazin, G. V. & Ho, W. Vibronic states in single molecule electron transport. Phys. Rev. Lett. 92, 206102 (2004).

    Article  CAS  Google Scholar 

  36. Sweetman, A. M. et al. Mapping the force field of a hydrogen-bonded assembly. Nature Commun. 5, 3931 (2014).

    Article  CAS  Google Scholar 

  37. Hämäläinen, S. K. et al. Intermolecular contrast in atomic force microscopy images without intermolecular bonds. Phys. Rev. Lett. 113, 186102 (2014).

    Article  Google Scholar 

  38. Pavliček, N. et al. Atomic force microscopy reveals bistable configurations of dibenzo[a,h]thianthrene and their interconversion pathway. Phys. Rev. Lett. 108, 086101 (2012).

    Article  Google Scholar 

  39. Hapala, P. et al. Mechanism of high-resolution STM/AFM imaging with functionalized tips. Phys. Rev. B 90, 085421 (2014).

    Article  Google Scholar 

  40. Schuler, B. et al. Adsorption geometry determination of single molecules by atomic force microscopy. Phys. Rev. Lett. 111, 106103 (2013).

    Article  Google Scholar 

  41. Laing, J. W. & Berry, R. S. Normal coordinates, structure, and bonding of benzyne. J. Am. Chem. Soc. 98, 660–664 (1976).

    Article  CAS  Google Scholar 

  42. Pauling, L., Brockway, L. O. & Beach, J. Y. The dependence of interatomic distance on single bond–double bond resonance. J. Am. Chem. Soc. 57, 2705–2709 (1935).

    Article  CAS  Google Scholar 

  43. Sedlar, J., Anđelič, I., Gutman, I., Vukičevič, D. & Graovac, A. Vindicating the Pauling-bond-order concept. Chem. Phys. Lett. 427, 418–420 (2006).

    Article  CAS  Google Scholar 

  44. Moll, N. et al. Image distortions of a partially fluorinated hydrocarbon molecule in atomic force microscopy with carbon monoxide terminated tips. Nano Lett. 14, 6127–6131 (2014).

    Article  CAS  Google Scholar 

  45. Rodríguez-Lojo, D., Cobas, A., Peña, D., Pérez, D. & Guitián, E. Aryne insertion into I–I σ-bonds. Org. Lett. 14, 1363–1365 (2012).

    Article  Google Scholar 

  46. Johnson, K., Sauerhammer, B., Titmuss, S. & King, D. A. Benzene adsorption on Ir(100) studied by low-energy electron diffraction I–V analysis: evidence for formation of tilted benzyne. J. Chem. Phys. 114, 9539–9548 (2001).

    Article  CAS  Google Scholar 

  47. Sugimoto, Y. et al. Chemical identification of individual surface atoms by atomic force microscopy. Nature 446, 64–67 (2007).

    Article  CAS  Google Scholar 

  48. Giessibl, F. J. Atomic resolution on Si(111)-(7 × 7) by noncontact atomic force microscopy with a force sensor based on a quartz tuning fork. Appl. Phys. Lett. 76, 1470–1472 (2000).

    Article  CAS  Google Scholar 

  49. Albrecht, T. R., Grütter, P., Horne, D. & Rugar, D. Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. J. Appl. Phys. 69, 668–673 (1991).

    Article  Google Scholar 

  50. Gross, L. et al. Investigating atomic contrast in atomic force microscopy and Kelvin probe force microscopy on ionic systems using functionalized tips. Phys. Rev. B 90, 155455 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

We thank R. Allenspach for valuable comments on the manuscript. The research leading to these results received funding from the European Union projects PAMS (agreement no. 610446), the ITN QTea (317485), the European Research Council Advanced Grant CEMAS (291194), the Spanish Ministry of Science and Competitiveness (MINECO, MAT2013-46593-C6-6-P, CTQ2013-44142-P) and FEDER.

Author information

Authors and Affiliations

Authors

Contributions

N.P., B.S., G.M. and L.G. performed the STM/AFM experiments. S.C., Do.P., E.G. and Di.P. synthesized the molecules. N.M. performed the DFT calculations. All the authors discussed the results and contributed to the manuscript.

Corresponding authors

Correspondence to Niko Pavliček or Diego Peña.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 996 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavliček, N., Schuler, B., Collazos, S. et al. On-surface generation and imaging of arynes by atomic force microscopy. Nature Chem 7, 623–628 (2015). https://doi.org/10.1038/nchem.2300

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2300

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing