Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An oxazetidine amino acid for chemical protein synthesis by rapid, serine-forming ligations

Abstract

Amide-forming ligation reactions allow the chemical synthesis of proteins by the union of unprotected peptide segments, and enable the preparation of protein derivatives not accessible by expression or bioengineering approaches. The native chemical ligation (NCL) of thioesters and N-terminal cysteines is unquestionably the most successful approach, but is not ideal for all synthetic targets. Here we describe the synthesis of an Fmoc-protected oxazetidine amino acid for use in the α-ketoacid–hydroxylamine (KAHA) amide ligation. When incorporated at the N-terminus of a peptide segment, this four-membered cyclic hydroxylamine can be used for rapid serine-forming ligations with peptide α-ketoacids. This ligation operates at low concentration (100 μM–5 mM) and mild temperatures (20–25 °C). The utility of the reaction was demonstrated by the synthesis of S100A4, a 12 kDa calcium-binding protein not easily accessible by NCL or other amide-forming reactions due to its primary sequence and properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis of enantioenriched Fmoc-oxazetidine amino acid 1.
Figure 2: A comparison between KAHA ligations with oxazetidine- and oxaproline-containing peptides.
Figure 3: Structure and synthesis of S100A4.
Figure 4: Monitoring of the coupling and folding processes in the synthesis of S100A4.

Similar content being viewed by others

References

  1. Kent, S. B. H. Bringing the science of proteins into the realm of organic chemistry: total chemical synthesis of SEP (synthetic erythropoiesis protein). Angew. Chem. Int. Ed. 52, 11988–11996 (2013).

    Article  CAS  Google Scholar 

  2. Nilsson, B. L., Soellner, M. B. & Raines, R. T. Chemical synthesis of proteins. Annu. Rev. Biophys. Biomol. Struct. 34, 91–118 (2005).

    Article  CAS  Google Scholar 

  3. Hackenberger, C. P. R., Bode, J. W. & Schwarzer, D. in Amino Acids, Peptides and Proteins in Organic Chemistry: Building Blocks, Catalysis and Coupling Chemistry Vol. 3 (ed Hughes, A. B.) 445–493 (Wiley-VCH, 2010).

    Google Scholar 

  4. Dawson, P., Muir, T., Clark-Lewis, I. & Kent, S. Synthesis of proteins by native chemical ligation. Science 266, 776–779 (1994).

    Article  CAS  Google Scholar 

  5. Pattabiraman, V. R. & Bode, J. W. Rethinking amide bond synthesis. Nature 480, 471–479 (2011).

    Article  CAS  Google Scholar 

  6. Bode, J. W., Fox, R. M. & Baucom, K. D. Chemoselective amide ligations by decarboxylative condensations of N-alkylhydroxylamines and α-ketoacids. Angew. Chem. Int. Ed. 45, 1248–1252 (2006).

    Article  CAS  Google Scholar 

  7. Pattabiraman, V. R., Ogunkoya, A. O. & Bode, J. W. Chemical protein synthesis by chemoselective α-ketoacid-hydroxylamine (KAHA) ligations with 5-oxaproline. Angew. Chem. Int. Ed. 51, 5114–5118 (2012).

    Article  CAS  Google Scholar 

  8. Wucherpfennig, T. G., Pattabiraman, V. R., Limberg, F. R. P., Ruiz-Rodríguez, J. & Bode, J. W. Traceless preparation of C-terminal α-ketoacids for chemical protein synthesis by α-ketoacid–hydroxylamine ligation: synthesis of SUMO2/3. Angew. Chem. Int. Ed. 53, 12248–12252 (2014).

    Article  CAS  Google Scholar 

  9. Wucherpfennig, T. G., Rohrbacher, F., Pattabiraman, V. R. & Bode, J. W. Formation and rearrangement of homoserine depsipeptides and depsiproteins in the α-ketoacid–hydroxylamine ligation with 5-oxaproline. Angew. Chem Int. Ed. 53, 12244–12247 (2014).

    Article  CAS  Google Scholar 

  10. Magers, D. H. & Davis, S. R. Ring strain in the oxazetidines. J. Mol. Struc. Theochem. 487, 205–210 (1999).

    Article  CAS  Google Scholar 

  11. Florio, S., Capriati, V., & Luisi, R. in Comprehensive Heterocyclic Chemistry III Vol. 2 (eds Katritzky, A. R., Ramsden, C. A., Scriven, E. F. V. & Taylor, R. J. K.) Ch. 14, 689–711 (Elsevier, 2008).

    Book  Google Scholar 

  12. Snider, B. B. & Duvall, J. R. Synthesis of the 4-methyl-1,2-oxazetidine-4-carboxylic acid moiety of the originally proposed halipeptin A and B structures. Tetrahedron Lett. 44, 3067–3070 (2003).

    Article  CAS  Google Scholar 

  13. Denicola, A., Einhorn, C., Einhorn, J. & Luche, J. L. Intramolecular alkylation of carboxylic-acids—application to the synthesis of Boc-protected cyclic amino-acids. J. Chem. Soc. Chem. Commun. 879–880 (1994).

  14. Casadei, M. A., Galli, C. & Mandolini, L. Ring-closure reactions. 22. Kinetics of cyclization of diethyl (ω-bromoalkyl)malonates in the range of 4- to 21-membered rings. Role of ring strain. J. Am. Chem. Soc. 106, 1051–1056 (1984).

    Article  CAS  Google Scholar 

  15. Baldwin, J. E. Rules for ring closure. Chem. Commun. 734–736 (1976).

  16. Alabugin, I. V. & Gilmore, K. Finding the right path: Baldwin ‘rules for ring closure’ and stereoelectronic control of cyclizations. Chem. Commun. 49, 1124–11250 (2013).

    Article  Google Scholar 

  17. Tanino, K. et al. Total synthesis of Solanoeclepin A. Nature Chem. 3, 484–488 (2011).

    Article  CAS  Google Scholar 

  18. Medjahdi, M., Gonzalez-Gomez, J. C., Foubelo, F. & Yus, M. Stereoselective synthesis of azetidines and pyrrolidines from N-tert-butylsulfonyl(2-aminoalkyl)oxiranes. J. Org. Chem. 74, 7859–7865 (2009).

    Article  CAS  Google Scholar 

  19. Davies, S. G., Jones, S., Sanz, M. A., Teixeira, F. C. & Fox, J. F. A novel [2,3] intramolecular rearrangement of N-benzyl-O-allylhydroxylamines. Chem. Commun. 2235–2236 (1998).

  20. Wuts, P. G. M. & Greene, T. W. in Greene's Protective Groups in Organic Synthesis (Wiley, 2006).

    Book  Google Scholar 

  21. Vallely, K. M. et al. Solution structure of human Mts1 (S100A4) as determined by NMR spectroscopy. Biochemistry 41, 12670–12680 (2002).

    Article  CAS  Google Scholar 

  22. Kiss, B. et al. Crystal structure of the S100A4-nonmuscle myosin IIA tail fragment complex reveals an asymmetric target binding mechanism. Proc. Natl Acad. Sci. USA 109, 6048–6053 (2012).

    Article  CAS  Google Scholar 

  23. Schäfer, B. W. & Heizmann, C. W. The S100 family of EF-hand calcium-binding proteins: functions and pathology. Trends Biochem. Sci. 21, 134–140 (1996).

    Article  Google Scholar 

  24. Sohma, Y., Sasaki, M., Hayashi, Y., Kimura, T. & Kiso, Y. Novel and efficient synthesis of difficult sequence-containing peptides through O–N intramolecular acyl migration reaction of O-acyl E isopeptides. Chem. Commun. 124–125 (2004).

  25. Avital-Shmilovici, M. et al. Fully convergent chemical synthesis of ester insulin: determination of the high resolution X-ray structure by racemic protein crystallography. J. Am. Chem. Soc. 135, 3173–3185 (2013).

    Article  CAS  Google Scholar 

  26. Kalia, J. & Raines, R. T. Advances in bioconjugation. Curr. Org. Chem. 14, 138–147 (2010).

    Article  CAS  Google Scholar 

  27. Li, X., Lam, H. Y., Zhang, Y. & Chan, C. K. Salicylaldehyde ester-induced chemoselective peptide ligations: enabling generation of natural peptidic linkages at the serine/threonine sites. Org. Lett. 12, 1724–1727 (2010).

    Article  CAS  Google Scholar 

  28. Zhang, Y., Xu, C., Lam, H. Y., Lee, C. L., & Li, X. Protein chemical synthesis by serine and threonine ligation. Proc. Natl Acad. Sci. USA 110, 6657–6662 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swiss National Science Foundation (200020_150073) and ETH Zürich. F. Thuaud, S. Baldauf and M. Dao are thanked for contributions to the synthesis of compound 1, V. Pattabiraman for discussions, F. Saito for advice on kinetics and C. Wolfrum for biological evaluation.

Author information

Authors and Affiliations

Authors

Contributions

J.W.B. and I.P. contributed equally to the design of the study. J.B., with contributions from I.P., wrote the paper. I.P performed the experiments and wrote the Supplementary Information.

Corresponding author

Correspondence to Jeffrey W. Bode.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 5836 kb)

Supplementary information

Crystallographic data for compound 9. (CIF 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pusterla, I., Bode, J. An oxazetidine amino acid for chemical protein synthesis by rapid, serine-forming ligations. Nature Chem 7, 668–672 (2015). https://doi.org/10.1038/nchem.2282

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2282

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing