Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Simulation-guided DNA probe design for consistently ultraspecific hybridization

Abstract

Hybridization of complementary sequences is one of the central tenets of nucleic acid chemistry; however, the unintended binding of closely related sequences limits the accuracy of hybridization-based approaches to analysing nucleic acids. Thermodynamics-guided probe design and empirical optimization of the reaction conditions have been used to enable the discrimination of single-nucleotide variants, but typically these approaches provide only an approximately 25-fold difference in binding affinity. Here we show that simulations of the binding kinetics are both necessary and sufficient to design nucleic acid probe systems with consistently high specificity as they enable the discovery of an optimal combination of thermodynamic parameters. Simulation-guided probe systems designed against 44 sequences of different target single-nucleotide variants showed between a 200- and 3,000-fold (median 890) higher binding affinity than their corresponding wild-type sequences. As a demonstration of the usefulness of this simulation-guided design approach, we developed probes that, in combination with PCR amplification, detect low concentrations of variant alleles (1%) in human genomic DNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Detection of rare nucleic acid variants by competitive compositions.
Figure 2: Kinetic simulations of competitive compositions.
Figure 3: The X-Probe is a dissociative probe that conditionally fluoresces on hybridization to its DNA target.
Figure 4: Design workflow and experimental demonstration of competitive composition.
Figure 5: Summary of competitive composition experimental results on synthetic targets.
Figure 6: Competitive composition assays on PCR amplicons of human genomic DNA samples.

Similar content being viewed by others

References

  1. Kim, S. & Misra, A. SNP genotyping: technologies and biomedical applications. Annu. Rev. Biomed. Eng. 9, 289–320 (2007).

    Article  CAS  Google Scholar 

  2. Schwarzenbach, H., Hoon, D. S. B. & Pantel, K. Cell-free nucleic acids as biomarkers in cancer patients. Nature Rev. Cancer 11, 426–437 (2011).

    Article  CAS  Google Scholar 

  3. Diehl, F. et al. Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc. Natl Acad. Sci. 102, 16368–16373 (2005).

    Article  CAS  Google Scholar 

  4. Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).

    Article  CAS  Google Scholar 

  5. Schmitt, M. et al. Detection of ultra-rare mutations by next-generation sequencing. Proc. Natl Acad. Sci. USA 109, 14508–14513 (2012).

    Article  CAS  Google Scholar 

  6. Leamon, J. H., Link, D. R., Egholm, M. & Rothberg, J. M. Overview: methods and applications for droplet compartmentalization of biology. Nature Methods 3, 541–543 (2006).

    Article  CAS  Google Scholar 

  7. Compton, J. Nucleic acid sequence-based amplification. Nature 350, 91–92 (1991).

    Article  CAS  Google Scholar 

  8. Mori, Y. & Notomi, T. Loop-mediated isothermal amplification (LAMP): a rapid, accurate, and cost-effective diagnostic method for infectious diseases. J. Infect. Chemother. 15, 62–69 (2009).

    Article  CAS  Google Scholar 

  9. Van Ness, J., Van Ness, L. K. & Galas, D. J. Isothermal reactions for the amplification of oligonucleotides. Proc. Natl Acad. Sci. USA 100, 4504–4509 (2003).

    Article  CAS  Google Scholar 

  10. Lizardi, P. et al. Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nature Genet. 19, 225–232 (1998).

    Article  CAS  Google Scholar 

  11. Schena, M., Shalon, D., Davis, R. W. & Brown, P. O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470 (1995).

    Article  CAS  Google Scholar 

  12. Gunderson, K. L., Steemers, F. J., Lee, G., Mendoza, L. G. & Chee, M. S. A genome-wide scalable SNP genotyping assay using microarray technology. Nature Biotechnol. 37, 549–554 (2005).

    CAS  Google Scholar 

  13. Geiss, G. K. et al. Direct multiplexed measurement of gene expression with color-coded probe pairs. Nature Biotechnol. 26, 317–325 (2008).

    Article  CAS  Google Scholar 

  14. Dunbar, S. A., Vander Zee, C. A., Oliver, K. G., Karem, K. L. & Jacobson, J. W. Quantitative, multiplexed detection of bacterial pathogens: DNA and protein applications of the Luminex LabMAP system. J. Microbiol. Methods 53, 245–252 (2003).

    Article  CAS  Google Scholar 

  15. Pel, J. et al. Nonlinear electrophoretic response yields a unique parameter for separation of biomolecules. Proc. Natl Acad. Sci. USA 106, 14796–14801 (2009).

    Article  CAS  Google Scholar 

  16. Morlan, J., Baker, J. & Sinicropi, D. Mutation detection by real-time PCR: a simple, robust and highly selective method. PloS ONE 4, e4584 (2009).

    Article  Google Scholar 

  17. Tyagi, S. & Kramer, F. R. Molecular beacons: probes that fluoresce upon hybridization. Nature Biotechnol. 14, 303–308 (1996).

    Article  CAS  Google Scholar 

  18. Tyagi, S., Bratu, D. P., & Kramer, F. R. Multicolor molecular beacons for allele discrimination. Nature Biotechnol. 16, 49–53 (1998).

    Article  CAS  Google Scholar 

  19. Li, Q., Luan, G., Guo, Q. & Liang, J. A new class of homogeneous nucleic acid probes based on specific displacement hybridization. Nucleic Acids Res. 30, e5 (2002).

    Article  Google Scholar 

  20. Xiao, Y. et al. Fluorescence detection of single-nucleotide polymorphisms with a single, self-complementary, triple-stem DNA probe, Angew. Chem. Int. Ed. 48, 4354–4358 (2009).

    Article  CAS  Google Scholar 

  21. Zhang, D. Y., Chen, S. X. & Yin, P. Thermodynamic optimization of nucleic acid hybridization specificity. Nature Chem. 4, 208–214 (2012).

    Article  CAS  Google Scholar 

  22. Petersen, M. & Wengel, J. LNA a versatile tool for therapeutics and genomics. Trends Biotechnol. 21, 74–81, (2003).

    Article  CAS  Google Scholar 

  23. He, G., Rapireddy, S., Bahal, R., Sahu, B. & Ly, D. H. Strand invasion of extended, mixed-sequence B-DNA by gamma PNAs. J. Am. Chem. Soc. 131, 12088–12090 (2009).

    Article  CAS  Google Scholar 

  24. Kierzek, E., Mathews, D. H., Ciesielska, A., Turner, D. H. & Kierzek, R. Nearest neighbor parameters for Watson–Crick complementary heteroduplexes formed between 2′-O-methyl RNA and RNA oligonucleotides. Nucleic Acids Res. 34, 3609–3614 (2006).

    Article  CAS  Google Scholar 

  25. Chun, J. et al. Dual priming oligonucleotide system for the multiplex detection of respiratory viruses and SNP genotyping of CYP2C19 gene. Nucleic Acids Res. 35, e40 (2007).

    Article  Google Scholar 

  26. Andreasen, D. et al. Improved microRNA quantification in total RNA from clinical samples. Methods 50, S6–S9 (2010).

    Article  CAS  Google Scholar 

  27. Kamisango, K. et al. Quantitative detection of hepatitis B virus by transcription-mediated amplification and hybridization protection assay. J. Clin. Microbiol. 37, 310–314 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Itzkovitz, S. & van Oudenaarden, A. Validating transcripts with probes and imaging technology. Nature Methods 8, S12–S19 (2011).

    Article  CAS  Google Scholar 

  29. Richter, A. et al. A multisite blinded study for the detection of BRAF mutations in formalin-fixed, paraffin-embedded malignant melanoma. Sci. Rep. 3, 1659 (2013).

    Article  Google Scholar 

  30. Zhang, D. Y. & Winfree, E. Control of DNA strand displacement kinetics using toehold exchange. J. Am. Chem. Soc. 131, 17303–17314.

  31. Reynaldo, L. P., Vologodskii, A. V., Neri, B. P. & Lyamichev, V. I. The kinetics of oligonucleotide replacements. J. Mol. Biol. 297, 511–520 (2000).

    Article  CAS  Google Scholar 

  32. SantaLucia, J. & Hicks, D. The thermodynamics of DNA structural motifs. Ann. Rev. Biochem. 33, 415–440 (2004).

    CAS  Google Scholar 

  33. Radding, C. M., Beattie, K. L., Holloman, W. K. & Wiegand, R. C. Uptake of homologous single-stranded fragments by superhelical DNA. J. Mol. Biol. 116, 859–839 (1977).

    Article  Google Scholar 

  34. Zhang, D. Y., Turberfield, A. J., Yurke, B. & Winfree, E. Engineering entropy-driven reactions and networks catalyzed by DNA. Science 318, 1121–1125 (2007).

    Article  CAS  Google Scholar 

  35. Zhang, D. Y., & Winfree, E. Robustness and modularity properties of a non-covalent DNA catalytic reaction. Nucleic Acids Res. 38, 4182–4197 (2010).

    Article  CAS  Google Scholar 

  36. Forbes, S. A. et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 39, D945–D950 (2010).

    Article  Google Scholar 

  37. Sugimoto, N. et al. Thermodynamic parameters to predict stability of RNA/DNA hybrid duplexes. Biochemistry 34, 11211–11216 (1995).

    Article  CAS  Google Scholar 

  38. Watkins, N. et al. Thermodynamic contributions of single internal rA·dA, rC·dC, rG·dG and rU·dT mismatches in RNA/DNA duplexes. Nucleic Acids Res. 39, 1894–1902 (2011).

    Article  CAS  Google Scholar 

  39. Eckert, K. A. & Kunkel, T. A. DNA polymerase fidelity and the polymerase chain reaction. PCR Methods Appl. 1, 17–24 (1991).

    Article  CAS  Google Scholar 

  40. Pezza, J. A., Kucera, R. & Sun, L. Polymerase fidelity: what is it, and what does it mean for your PCR? https://www.neb.com/tools-and-resources/feature-articles/polymerase-fidelity-what-is-it-and-what-does-it-mean-for-your-pcr, accessed November 27, 2014.

  41. Stockton, J., Ellis, J. S., Saville, M., Clewley, J. P. & Zambon, M. C. Multiplex PCR for typing and subtyping influenza and respiratory syncytial viruses. J. Clin. Microbiol. 36, 2990–2995 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. de Sanjose, S. et al. Human papillomavirus genotype attribution in invasive cervical cancer: a retrospective cross-sectional worldwide study. Lancet Oncol. 11, 1048–1056 (2010).

    Article  CAS  Google Scholar 

  43. Boehme, C. C. et al. Rapid molecular detection of tuberculosis and rifampin resistance. N. Engl. J. Med. 363, 1005–1015 (2010).

    Article  CAS  Google Scholar 

  44. Mardis, E. R. A decade's perspective on DNA sequencing technology. Nature 470, 198–203 (2011).

    Article  CAS  Google Scholar 

  45. Imperiale, T. F. et al. Multitarget stool DNA testing for colorectal cancer screening. N. Engl. J. Med. 370, 1287–1297 (2014).

    Article  CAS  Google Scholar 

  46. Baker, M. Digital PCR hits its stride. Nature Methods 9, 541–544 (2012).

    Article  CAS  Google Scholar 

  47. Holland, P. M., Abramson, R. D., Watson, R. & Gelfand, D. H. Detection of specific polymerase chain reaction product by utilizing the 5–3 exonuclease activity of Thermus aquaticus DNA polymerase. Proc. Natl Acad. Sci. USA 88, 7276–7280 (1991).

    Article  CAS  Google Scholar 

  48. Saiki, R. K. et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487–491 (1988).

    Article  CAS  Google Scholar 

  49. Schmittgen, T. D. & Livak, K. J. Analyzing real-time PCR data by the comparative CT method. Nature Protocols 3, 1101–1108 (2008).

    Article  CAS  Google Scholar 

  50. Schultz, S., Smith, D. R., Mock, J. J. & Schultz, D. A. Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proc. Natl Acad. Sci. USA 97, 996–1001 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Rice University Department of Bioengineering start-up fund to D.Y.Z., a John S. Dunn award to D.Y.Z. and a National Institutes of Health Grant (EB015331) to D.Y.Z.

Author information

Authors and Affiliations

Authors

Contributions

J.S.W. and D.Y.Z. conceived the project, performed the theoretical analysis, designed the experiments, conducted the experiments, analysed the data and wrote the paper.

Corresponding author

Correspondence to David Yu Zhang.

Ethics declarations

Competing interests

Two patents are pending on this work. J.S.W. and D.Y.Z. are equity holders of Searna Technologies, a startup aiming to commercialize the presented technology.

Supplementary information

Supplementary information

Supplementary information (PDF 2641 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhang, D. Simulation-guided DNA probe design for consistently ultraspecific hybridization. Nature Chem 7, 545–553 (2015). https://doi.org/10.1038/nchem.2266

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2266

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing