Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An infinite chainmail of M6L6 metallacycles featuring multiple Borromean links

Abstract

Borromean rings or links are topologically complex assemblies of three entangled rings where no two rings are interlinked in a chain-like catenane, yet the three rings cannot be separated. We report here a metallacycle complex whose crystalline network forms the first example of a new class of entanglement. The complex is formed from the self-assembly of CuBr2 with the cyclotriveratrylene-scaffold ligand (±)-tris(iso-nicotinoyl)cyclotriguaiacylene. Individual metallacycles are interwoven into a two-dimensional chainmail network where each metallacycle exhibits multiple Borromean-ring-like associations with its neighbours. This only occurs in the solid state, and also represents the first example of a crystalline infinite chainmail two-dimensional network. Crystals of the complex were twinned and have an unusual hollow tubular morphology that is likely to result from a localized dissolution-recrystallization process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Examples of entangled ring assemblies.
Figure 2: Metallacycles and Borromean-ring motifs from the crystal structure of complex 1.
Figure 3: Extended Borromean-ring motifs in complex 1.
Figure 4: Details from the crystal structure of complex 1, highlighting interactions between chainmail layers.
Figure 5: FEG-SEM images of crystals of complex 1.

Similar content being viewed by others

References

  1. Sauvage, J-P. & Dietrich-Buchecker, C. O. (eds) Molecular Catenanes, Rotaxanes and Knots. A Journey Through the World of Molecular Topology (Wiley-VCH, 1999).

    Google Scholar 

  2. Forgan, R. S., Sauvage, J-P. & Stoddart, J. F. Chemical topology: complex molecular knots, links, and entanglements. Chem. Rev. 111, 5434–5464 (2011).

    CAS  PubMed  Google Scholar 

  3. Ayme, J-F., Beves, J. E., Campbell, C. J. & Leigh, D. A. Template synthesis of molecular knots. Chem. Soc. Rev. 42, 1700–1712 (2013).

    CAS  PubMed  Google Scholar 

  4. Yang, W., Li, Y., Liu, H., Chi, L. & Li, Y. Design and assembly of rotaxane-based molecular switches and machines. Small 8, 504–516 (2012).

    CAS  PubMed  Google Scholar 

  5. Credi, A., Ventur, M. & Balzani, V. Light on molecular machines. ChemPhysChem. 11, 3398–3403 (2010).

    CAS  PubMed  Google Scholar 

  6. Ali, C. et al. High hopes: can molecular electronics realize its potential? Chem. Soc. Rev. 41, 4827–4859 (2012).

    Google Scholar 

  7. Neal, E. A. & Goldup, S. M. Chemical consequences of mechanical bonding in catenanes and rotaxanes: isomerism, modification, catalysis and molecular machines for synthesis. Chem. Commun. 50, 5128–5142 (2014).

    CAS  Google Scholar 

  8. Zhang, G., Presly, O., White, F., Oppel, I. M. & Mastalerz, M. A shape-persistent quadruply interlocked giant cage catenane with two distinct pores in the solid state. Angew. Chem. Int. Ed. 53, 5126–5130 (2014).

    CAS  Google Scholar 

  9. Hasell, T. et al. Triply interlocked covalent organic cages. Nature Chem. 2, 750–755 (2010).

    CAS  Google Scholar 

  10. Westcott, A., Fisher, J., Harding, L. P., Rizkallah, P. & Hardie, M. J. Self-assembly of a 3-D triply interlocked chiral [2]catenane. J. Am. Chem. Soc. 130, 2950–2951 (2008).

    CAS  PubMed  Google Scholar 

  11. Henkelis, J. J., Ronson, T. K., Harding, L. P. & Hardie, M. J. M3L2 metallo-cryptophanes: [2]catenane and simple cages. Chem. Commun. 47, 6560–6562 (2011).

    CAS  Google Scholar 

  12. Wang, L., Vysotsky, M. O., Bogdan, A., Bolte, M. & Bohmer, V. Multiple catenanes derived from calix[4]arenes. Science 304, 1312–1314 (2004).

    CAS  PubMed  Google Scholar 

  13. Leigh, D. A., Pritchard, R. G. & Stephens, A. J. A star of David catenane. Nature Chem. 6, 978–982 (2014).

    CAS  Google Scholar 

  14. Niergarten, J-F., Dietrich-Buchecker, C. O. & Sauvage, J-P. Synthesis of a doubly interlocked [2]-catenane. J. Am. Chem. Soc. 116, 375–376 (1994).

    Google Scholar 

  15. Mao, C., Sun, W. & Seeman, N. C. Assembly of Borromean rings from DNA. Nature 386, 137–138 (1997).

    CAS  PubMed  Google Scholar 

  16. Peters, A. J., Chichak, K. S., Cantrill, S. J. & Stoddart, J. F. Nanoscale Borromean links for real. Chem. Commun. 3394–3396 (2005).

  17. Chichak, K. S. et al. Molecular Borromean rings. Science 304, 1308–1312 (2004).

    CAS  PubMed  Google Scholar 

  18. Huang, S-L., Lin, Y-J., Li, Z-H. & Jin, G-X. Self-assembly of molecular Borromean rings from bimetallic coordination rectangles. Angew. Chem. Int. Ed. 53, 11218–11222 (2014).

    CAS  Google Scholar 

  19. Huang, S-L., Lin, Y-J., Hor, T. S. A. & Jin, G-X. Cp*Rh-based heterometallic metallarectangles: size-dependent Borromean link structures and catalytic acyl transfer. J. Am. Chem. Soc. 135, 8125–8128 (2013).

    CAS  PubMed  Google Scholar 

  20. Li, F., Clegg, J. K., Lindoy, L. F., Macquart, R. B. & Meehan, G. V. Metallosupramolecular self-assembly of a universal 3-ravel. Nature Commun. 2, 205 (2011).

    Google Scholar 

  21. Carlucci, L., Ciani, G., Proserpio, D. M., Mitina, T. G. & Blatov, V. A. Entangled two-dimensional coordination networks: a general survey. Chem. Rev. 114, 7557–7580 (2014).

    CAS  PubMed  Google Scholar 

  22. Batten, S. R. in Supramolecular Chemistry: From Molecules to Nanomaterials Vol. 6 (eds Gale, P. A. & Steed, J. W.) 3107–3120 (Wiley, 2012).

  23. Carlucci, L., Ciani, G. & Proserpio, D. M. Polycatenantion, polythreading and polyknotting in coordination network chemistry. Coord. Chem. Rev. 246, 247–289 (2003).

    CAS  Google Scholar 

  24. Jin, C-M., Lu, H., Wu, L-Y. & Huang, J. A new infinite inorganic infinite [n]catenane from silver and bis(2-methylimidazoyl)methane ligand. Chem. Commun. 5039–5041 (2006).

  25. Loots, L. & Barbour, L. J. An infinite catenane self-assembled by π···π interactions. Chem. Commun. 49, 671–673 (2012).

    Google Scholar 

  26. Sagué, J. L. & Fromm, K. M. The first two-dimensional polycatenane: a new type of robust network obtained by Ag-connected one-dimensional polycatenes. Cryst. Growth Des. 6, 1566–1568 (2006).

    Google Scholar 

  27. Kuang, X. et al. Assembly of a metal–organic framework by sextuple intercatenation of discrete adamantane-like cages. Nature Chem. 2, 461–465 (2010).

    CAS  Google Scholar 

  28. Heine, J., Schmedt auf der Günne, J. & Dehnen, S. Formation of a strandlike polycatenane of icosahedral cages for reversible one-dimensional encapsulation of guests. J. Am. Chem. Soc. 133, 10018–10021 (2011).

    CAS  PubMed  Google Scholar 

  29. Dolomanov, O. V., Blake, A. J., Champness, N. R., Schröder, M. & Wilson, C. A novel synthetic strategy for hexanuclear supramolecular architectures. Chem. Commun. 682–683 (2003).

  30. Schmittel, M. et al. Cap for copper(I) ions! Metallosupramolecular solid and solution state structures on the basis of the dynamic tetrahedral [Cu(phenAr2)(py)2]+ motif. Inorg. Chem. 48, 8192–8200 (2009).

    CAS  PubMed  Google Scholar 

  31. Loren, J. C., Yoshizawa, M., Haldimann, R. F., Linden, A. & Siegel, J. S. Synthetic approaches to a molecular Borromean link: two-ring threading with polypyridine templates. Angew. Chem. Int. Ed. 42, 5702–5705 (2003).

    CAS  Google Scholar 

  32. Carlucci, L., Ciani, G. & Proserpio, D. M. Borromean links and other non-conventional links in ‘polycatenated’ coordination polymers: re-examination of some puzzling networks. CrystEngComm 5, 269–279 (2003).

    CAS  Google Scholar 

  33. Pan, M. & Su, C-Y. Coordination assembly of Borromean structures. CrystEngComm 16, 7847–7859 (2014).

    CAS  Google Scholar 

  34. Hardie, M. J. Recent advances in the chemistry of cyclotriveratrylene. Chem. Soc. Rev. 39, 516–527 (2010).

    CAS  PubMed  Google Scholar 

  35. Ronson, T. K. et al. Stellated polyhedral assembly of a topologically complicated Pd4L4 ‘Solomon cube’. Nature Chem. 1, 212–216 (2009).

    CAS  PubMed  Google Scholar 

  36. Hardie, M. J. & Sumby, C. J. An interwoven 2-D coordination network prepared from the molecular host tris(isonicotinyl)cyclotriguaiacylene and silver(I) cobalt(III) bis(dicarbollide). Inorg. Chem. 43, 6872–6874 (2004).

    CAS  PubMed  Google Scholar 

  37. Ronson, T. K., Fisher, J., Harding, L. P. & Hardie, M. J. Star-burst prisms with cyclotriveratrylene-type ligands: a [Pd6L8]12+ stella octangula. Angew. Chem. Int. Ed. 46, 9086–9088 (2007).

    CAS  Google Scholar 

  38. Eddleston, M. D. & Jones, W. Formation of tubular crystals of pharmaceutical compounds. Cryst. Growth Des. 10, 365–370 (2010).

    CAS  Google Scholar 

  39. Niu, Z. & Gibson, H. W. Polycatenanes. Chem. Rev. 109, 6024–6046 (2009).

    CAS  PubMed  Google Scholar 

  40. Fang, L. et al. Mechanically bonded macromolecules. Chem. Soc. Rev. 39, 17–29 (2010).

    CAS  PubMed  Google Scholar 

  41. Duda, R. L. Protein chainmail: catenated protein in viral capsids. Cell 94, 55–60 (1998).

    CAS  PubMed  Google Scholar 

  42. Hao, C. & March, R. E. Electrospray ionization tandem mass spectrometric study of salt cluster ions: Part 2 – Salts of polyatomic acid groups and of multivalent metals. J. Mass. Spectrom. 36, 509–521 (2001).

    CAS  PubMed  Google Scholar 

  43. Zhao, Y. S. et al. Optical waveguide based on crystalline organic microtubes and microrods. Angew. Chem. Int. Ed. 47, 7301–7305 (2008).

    CAS  Google Scholar 

  44. Zhang, X-L. et al. Discrete chiral single-crystal microtubes assembled with honeycomb coordination networks showing structural diversity and Borromean topology in one single crystal. Chem. Mater. 19, 4630–4632 (2007).

    CAS  Google Scholar 

  45. Ma, Y., Börner, H. G., Hartmann, J. & Cölfen, H. Synthesis of DL-alanine hollow tubes and core–shell mesostructures. Chem. Eur. J. 12, 7882–7888 (2006).

    CAS  PubMed  Google Scholar 

  46. Sander, J. R. G., Bučar, D-K., Baltrusaitis, J. & MacGillivray, L. R. Organic nanocrystals of the resorcinarene hexamer via sonochemistry: evidence of reversed crystal growth involving hollow morphologies. J. Am. Chem. Soc. 134, 6900–6902 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Ulrich, J., Schuster, A. & Stelzer, T. Crystalline coats or hollow crystals as tools for product design in pharmaceutical industry. J. Cryst. Growth 362, 235–237 (2013).

    CAS  Google Scholar 

  48. Chen, Y., Zhu, B., Zhang, F., Han, Y. & Bo, Z. Hierarchical supramolecular self-assembly of nanotubes and layered sheets. Angew. Chem. Int. Ed. 47, 6015–6018 (2008).

    CAS  Google Scholar 

  49. Henkelis, J. J. et al. Metallo-cryptophanes decorated with bis-N-heterocyclic carbene ligands: self-assembly and guest uptake into a non-porous crystalline lattice. J. Am. Chem. Soc. 136, 14393–14396 (2014).

    CAS  PubMed  Google Scholar 

  50. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A64, 112–122 (2008).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Engineering and Physical Sciences Research Council for funding this research, T. Marinko-Covell for microanalysis, A. Kazlauciunas for EDX and thermal gravimetric analysis measurements and S. Warriner for assistance with mass spectrometry. The authors thank S. Hyde for useful discussions regarding topology. The authors acknowledge Diamond Light Source for time on beamline I19 under proposal MT8911.

Author information

Authors and Affiliations

Authors

Contributions

F.L.T-G. and M.J.H. conceived and designed experiments. F.L.T-G. performed synthetic, crystallographic and other characterization experiments and A.N.K. performed SEM experiments. All authors contributed to analysis of the data. M.J.H. wrote the paper with discussions and contributions from F.L.T-G. and some diagrams prepared by A.N.K.

Corresponding author

Correspondence to Michaele J. Hardie.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3309 kb)

Supplementary information

Crystallographic data for compound 1. (CIF 54 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thorp-Greenwood, F., Kulak, A. & Hardie, M. An infinite chainmail of M6L6 metallacycles featuring multiple Borromean links. Nature Chem 7, 526–531 (2015). https://doi.org/10.1038/nchem.2259

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2259

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing