A molecular shuttle that operates inside a metal–organic framework

Abstract

A ‘molecular shuttle’ is an interlocked molecular assembly in which a macrocyclic ring is able to move back and forth between two recognition sites. This large-amplitude translational motion was first characterized in solution in 1991. Since that report, many mechanically interlocked molecules (MIMs) have been designed, synthesized and shown to mimic the complex functions of macroscopic switches and machines. Here, we show that this fundamental concept—the translational motion of a molecular shuttle—can be organized, initiated and made to operate inside a crystalline, solid-state material. A metal–organic framework (MOF) designated UWDM-4 was prepared that contains a rigid linker that is a molecular shuttle. It was demonstrated by variable-temperature 1H-13C cross-polarization/magic-angle spinning (CP/MAS) and 13C 2D exchange correlation spectroscopy (EXSY) solid-state NMR at 21.1 T on a 13C-enriched sample that the macrocyclic ring undergoes rapid shuttling along the rigid axle built between struts of the framework.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Stoddart's original molecular shuttle operating in acetone solution.
Figure 2: MOF materials are commonly constructed from a combination of rigid linking struts (green) and metal nodes (brown).
Figure 3: Synthesis and X-ray structural characterization of a molecular shuttle linker.
Figure 4: Structure of UWDM-4·HBF4 determined by single-crystal X-ray diffraction.
Figure 5: UWDM-4·HBF4 can be efficiently converted to UWDM-4 without loss of crystallinity.
Figure 6: 13C SSNMR studies verify that the designed molecular shuttle can undergo translational motion (molecular shuttling) inside the lattice of the MOF.

References

  1. 1

    Anelli, P. L., Spencer, N. & Stoddart, J. F. A molecular shuttle. J. Am. Chem. Soc. 113, 5131–5133 (1991).

  2. 2

    Sauvage, J-P. & Dietrich-Buchecker, C. (eds) Molecular Catenanes, Rotaxanes and Knots: A Journey Through the World of Molecular Topology (Wiley-VCH, 1999).

  3. 3

    Thordarson, P., Bijsterveld, E. J. A., Rowan, A. E. & Nolte, R. J. M. Epoxidation of polybutadiene by a topologically linked catalyst. Nature 424, 915–918 (2003).

  4. 4

    Kay, E. K., Leigh, D. A. & Zerbetto, F. Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2007).

  5. 5

    Gong, H-Y., Rambo, B. M., Karnas, E., Lynch, V. M. & Sessler, J. L. A ‘Texas-sized’ molecular box that forms an anion-induced supramolecular necklace. Nature Chem. 2, 406–409 (2010).

  6. 6

    Lee, S., Chen, C-H. & Flood, A. H. A pentagonal cyanostar macrocycle with cyanostilbene CH donors binds anions and forms dialkylphosphate [3]rotaxanes. Nature Chem. 5, 704–710 (2013).

  7. 7

    Langton, M. J. & Beer, P. D. Rotaxane and catenane host structures for sensing charged guest species. Acc. Chem. Res. 47, 1935–1949 (2014).

  8. 8

    Stoddart, J. F. Putting mechanically interlocked molecules (MIMs) to work in tomorrow's world. Angew. Chem. Int. Ed. 53, 11102–11104 (2014).

  9. 9

    Bissell, R. A., Córdova, E., Kaifer, A. E. & Stoddart, J. F. A chemically and electrochemically switchable molecular shuttle. Nature 369, 133–137 (1994).

  10. 10

    Marlin, D. S., Cabrera, D. G., Leigh, D. A. & Slawin, A. M. Z. An allosterically regulated molecular shuttle. Angew. Chem. Int. Ed. 45, 1385–1390 (2006).

  11. 11

    Bottari, G., Leigh, D. A. & Pérez, E. M. Chiroptical switching in a bistable molecular shuttle. J. Am. Chem. Soc. 125, 13360–13361 (2003).

  12. 12

    Vella, S. J., Tiburcio, J. & Loeb, S. J. Optically sensed molecular shuttles driven by acid–base chemistry. Chem. Commun. 4752–4754 (2007).

  13. 13

    Berná, J. et al. Macroscopic transport by synthetic molecular machines. Nature Mater. 4, 704–710 (2005).

  14. 14

    Feringa, B. L. & Browne, W. R. (eds) Molecular Switches 2nd edn (Wiley-VCH, 2011).

  15. 15

    Collier, C. P. et al. A [2]catenane-based solid-state electronically reconfigurable switch. Science 289, 1172–1175 (2000).

  16. 16

    Fahrenbach, A. C. et al. Organic switches for surfaces and devices. Adv. Mater. 25, 331–348 (2013).

  17. 17

    Lewandowski, B. et al. Sequence-specific peptide synthesis by an artificial small-molecule machine. Science 339, 189–193 (2013).

  18. 18

    Li, H. et al. Relative unidirectional translation in an artificial molecular assembly fueled by light. J. Am. Chem. Soc. 135, 18609–18620 (2013).

  19. 19

    Ragazzon, G., Baroncini, M., Silvi, S., Venturi, M. & Credi, A. Light-powered autonomous and directional molecular motion of a dissipative self-assembling system. Nature Nanotech. 10, 70–75 (2015).

  20. 20

    Coskun, A., Banaszak, M., Astumian, R. D., Stoddart, J. F. & Grzybowski, B. A. Great expectations: can artificial molecular machines deliver on their promises? Chem. Soc. Rev. 41, 19–31 (2012).

  21. 21

    Balzani, V., Credi, A. & Venturi, M. Molecular Devices and Machines: Concepts and Perspectives for the Nanoworld (Wiley InterScience, 2008).

  22. 22

    Balzani, V. Nanoscience and nanotechnology: the bottom-up construction of molecular devices and machines. Pure Appl. Chem. 80, 1631–1650 (2008).

  23. 23

    Deng, H. X., Olson, M. A., Stoddart, J. F. & Yaghi, O. M. Robust dynamics. Nature Chem. 2, 439–443 (2010).

  24. 24

    Zhou, H-C., Long, J. R. & Yaghi, O. M. Introduction to metal–organic frameworks. Chem. Rev. 112, 673–674 (2012).

  25. 25

    Li, H., Eddaoudi, M., O'Keeffe, M. & Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal–organic framework. Nature 402, 276–279 (1999).

  26. 26

    Furukawa, H., Cordova, K. E., O'Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013).

  27. 27

    Lu, W. et al. Tuning the structure and function of metal–organic frameworks via linker design. Chem. Soc. Rev. 43, 5561–5593 (2014).

  28. 28

    Li, Q. et al. Docking in metal–organic frameworks. Science 325, 855–859 (2009).

  29. 29

    Li, Q. et al. A catenated strut in a catenated metal–organic framework. Angew. Chem. Int. Ed. 49, 6751–6755 (2010).

  30. 30

    Li, Q. et al. A metal–organic framework replete with ordered donor–acceptor catenanes. Chem. Commun. 380–382 (2010).

  31. 31

    Coskun, A. et al. Metal–organic frameworks incorporating copper–complexed rotaxanes. Angew. Chem. Int. Ed. 51, 2160–2163 (2012).

  32. 32

    Cao, D. et al. Three-dimensional architectures incorporating stereoregular donor–acceptor stacks. Chem. Eur. J. 19, 8457–8465 (2013).

  33. 33

    Strutt, N. L. et al. Incorporation of an A1/A2-difunctionalized pillar[5]arene into a metal–organic framework. J. Am. Chem. Soc. 134, 17436–17439 (2012).

  34. 34

    Vukotic, V. N. & Loeb, S. J. Coordination polymers containing rotaxanes as linkers. Chem. Soc. Rev. 41, 5896–5906 (2012).

  35. 35

    Loeb, S. J. Rotaxanes as ligands: from molecules to materials. Chem. Soc. Rev. 36, 226–235 (2007).

  36. 36

    Vukotic, V. N., Harris, K. J., Zhu, K., Schurko, R. W. & Loeb, S. J. Metal–organic frameworks with dynamic interlocked components. Nature Chem. 4, 456–460 (2012).

  37. 37

    Zhu, K., Vukotic, V. N., O'Keefe, C. A., Schurko, R. W. & Loeb, S. J. Metal–organic frameworks with mechanically interlocked pillars: controlling ring dynamics in the solid-state via a reversible phase change. J. Am. Chem. Soc. 136, 7403–7409 (2014).

  38. 38

    Eddaoudi, M. et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469–472 (2002).

  39. 39

    Oisaki, K., Li, Q., Furukawa, H., Czaja, A. U. & Yaghi, O. M. A metal–organic framework with covalently bound organometallic complexes. J. Am. Chem. Soc. 132, 9262–9264 (2010).

  40. 40

    Zhu, K., Vukotic, V. N. & Loeb, S. J. Molecular shuttling of a compact and rigid, H-shaped [2]rotaxane. Angew. Chem Int. Ed. 51, 2168–2172 (2012).

  41. 41

    Zhu, K., Vukotic, V. N., Noujeim, N. & Loeb, S. J. Bis(benzimidazolium) axles and crown ether wheels: a versatile templating pair for the formation of [2]rotaxane molecular shuttles. Chem. Sci. 3, 3265–3271 (2012).

  42. 42

    Vandersluis, P. & Spek, A. L. Bypass—an effective method for the refinement of crystal-structures containing disordered solvent regions. Acta Crystallogr. A46, 194–201 (1990).

  43. 43

    Noujeim, N., Zhu, K., Vukotic, V. N. & Loeb, S. J. [2]Pseudorotaxanes from T-shaped benzimidazolium axles and [24]crown-8 wheels. Org. Lett. 14, 2484–2487 (2012).

  44. 44

    Bain, A. D. Chemical exchange in NMR. Prog. Nucl. Magn. Reson. Spectrosc. 43, 63–103 (2003).

  45. 45

    Karlen, S. D. et al. Symmetry and dynamics of molecular rotors in amphidynamic molecular crystals. Proc. Natl Acad. Sci. USA 107, 14973–14977 (2010).

  46. 46

    Jeener, J., Meier, B. H., Bachmann, P. & Ernst, R. R. Investigation of exchange processes by two-dimensional NMR spectroscopy. J. Chem. Phys. 71, 4546–4553 (1979).

  47. 47

    Perrin, C. L. & Dwyer, T. J. Application of two-dimensional NMR to kinetics of chemical exchange. Chem. Rev. 90, 935–967 (1990).

Download references

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada through Discovery Grants and Accelerator Supplements to S.J.L. and R.W.S. and a Canada Research Chair award to S.J.L. R.W.S. and S.J.L. acknowledge support from NSERC, the Canadian Foundation for Innovation, the Ontario Innovation Trust and the University of Windsor, for the development and maintenance of the SSNMR and X-ray diffraction centres. V.N.V. acknowledges financial support provided by NSERC through an Alexander Graham Bell Canada Graduate Doctoral Scholarship and by the International Center for Diffraction Data for a Ludo Frevel Crystallography Scholarship. The authors thank M. Revington for technical assistance with solution NMR spectroscopy experiments, V. Terskikh for collecting the 21.1 T SSNMR data and J. Auld for recording electrospray mass spectrometry data. Access to the 900 MHz NMR spectrometer was provided by the National Ultrahigh-Field NMR Facility for Solids (Ottawa, Canada; http://www.uwindsor.ca).

Author information

S.J.L. supervised the project. K.Z. designed the experiments with help from V.N.V. and C.O. K.Z. performed all the synthetic experiments. K.Z. and V.N.V. collected and analysed the PXRD, TGA and SCXRD data with assistance from S.J.L. C.O. collected and analysed the SSNMR data. R.W.S supervised all SSNMR data collection, analysis and interpretation. S.J.L. and K.Z. wrote the manuscript with input from V.N.V., C.O. and R.W.S.

Correspondence to Robert W. Schurko or Stephen J. Loeb.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4408 kb)

Supplementary information

Crystallographic data for compound 2. (CIF 1490 kb)

Supplementary information

Crystallographic data for compound UWDM-4•HBF4. (CIF 4846 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, K., O'Keefe, C., Vukotic, V. et al. A molecular shuttle that operates inside a metal–organic framework. Nature Chem 7, 514–519 (2015) doi:10.1038/nchem.2258

Download citation

Further reading