Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Freeze–thaw cycles as drivers of complex ribozyme assembly

Abstract

The emergence of an RNA catalyst capable of self-replication is considered a key transition in the origin of life. However, how such replicase ribozymes emerged from the pools of short RNA oligomers arising from prebiotic chemistry and non-enzymatic replication is unclear. Here we show that RNA polymerase ribozymes can assemble from simple catalytic networks of RNA oligomers no longer than 30 nucleotides. The entropically disfavoured assembly reaction is driven by iterative freeze–thaw cycles, even in the absence of external activation chemistry. The steep temperature and concentration gradients of such cycles result in an RNA chaperone effect that enhances the otherwise only partially realized catalytic potential of the RNA oligomer pool by an order of magnitude. Our work outlines how cyclic physicochemical processes could have driven an expansion of RNA compositional and phenotypic complexity from simple oligomer pools.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The hairpin ribozyme and RPR4.
Figure 2: Freeze-thaw cycling drives RPR4 assembly.
Figure 3: Effect of freezing and thawing on RNA and 3frHPz dynamics.
Figure 4: RPR4 assembly intermediate pathways and emergence of polymerase activity.
Figure 5: Assembly of a polymerase ribozyme from fragments ≤30 nucleotides.
Figure 6: Assembly of RPR4 from oligonucleotides devoid of >p preactivation.

Similar content being viewed by others

References

  1. Gilbert, W. Origin of life: the RNA world. Nature 319, 618–618 (1986).

    Article  Google Scholar 

  2. Powner, M. W., Gerland, B. & Sutherland, J. D. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459, 239–242 (2009).

    CAS  PubMed  Google Scholar 

  3. Ferris, J. P., Hill, A. R. Jr, Liu, R. & Orgel, L. E. Synthesis of long prebiotic oligomers on mineral surfaces. Nature 381, 59–61 (1996).

    CAS  PubMed  Google Scholar 

  4. Huang, W. & Ferris, J. P. One-step, regioselective synthesis of up to 50-mers of RNA oligomers by montmorillonite catalysis. J. Am. Chem. Soc. 128, 8914–8919 (2006).

    CAS  PubMed  Google Scholar 

  5. Monnard, P. A. & Szostak, J. W. Metal-ion catalyzed polymerization in the eutectic phase in water-ice: a possible approach to template-directed RNA polymerization. J. Inorg. Biochem. 102, 1104–1111, (2008).

    CAS  PubMed  Google Scholar 

  6. Mansy, S. S. et al. Template-directed synthesis of a genetic polymer in a model protocell. Nature 454, 122–125 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Deck, C., Jauker, M. & Richert, C. Efficient enzyme-free copying of all four nucleobases templated by immobilized RNA. Nature Chem. 3, 603–608 (2011).

    CAS  Google Scholar 

  8. Adamala, K. & Szostak, J. W. Nonenzymatic template-directed RNA synthesis inside model protocells. Science 342, 1098–1100 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Morasch, M., Mast, C. B., Langer, J. K., Schilcher, P. & Braun, D. Dry polymerization of 3′,5′-cyclic GMP to long strands of RNA. ChemBioChem 15, 879–883 (2014).

    CAS  PubMed  Google Scholar 

  10. Da Silva, L., Maurel, M. C. & Deamer, D. Salt-promoted synthesis of RNA-like molecules in simulated hydrothermal conditions. J. Mol. Evol. 80, 86–97 (2015).

    CAS  PubMed  Google Scholar 

  11. Monnard, P. A., Kanavarioti, A. & Deamer, D. W. Eutectic phase polymerization of activated ribonucleotide mixtures yields quasi-equimolar incorporation of purine and pyrimidine nucleobases. J. Am. Chem. Soc. 125, 13734–13740 (2003).

    CAS  PubMed  Google Scholar 

  12. Lincoln, T. A. & Joyce, G. F. Self-sustained replication of an RNA enzyme. Science 323, 1229–1232 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Vaidya, N. et al. Spontaneous network formation among cooperative RNA replicators. Nature 491, 72–77 (2012).

    CAS  PubMed  Google Scholar 

  14. Doudna, J. A., Couture, S. & Szostak, J. W. A multisubunit ribozyme that is a catalyst of and template for complementary strand RNA synthesis. Science 251, 1605–1608 (1991).

    CAS  PubMed  Google Scholar 

  15. Sczepanski, J. T. & Joyce, G. F. A cross-chiral RNA polymerase ribozyme. Nature 515, 440–442 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Johnston, W. K., Unrau, P. J., Lawrence, M. S., Glasner, M. E. & Bartel, D. P. RNA-catalyzed RNA polymerization: accurate and general RNA-templated primer extension. Science 292, 1319–1325 (2001).

    CAS  PubMed  Google Scholar 

  17. Wochner, A., Attwater, J., Coulson, A. & Holliger, P. Ribozyme-catalyzed transcription of an active ribozyme. Science 332, 209–212 (2011).

    CAS  PubMed  Google Scholar 

  18. Attwater, J., Wochner, A. & Holliger, P. In-ice evolution of RNA polymerase ribozyme activity. Nature Chem. 5, 1011–1018 (2013).

    CAS  Google Scholar 

  19. Szostak, J. W. The eightfold path to non-enzymatic RNA replication. J. Syst. Chem. 3, 2 (2012).

  20. Engelhart, A. E., Powner, M. W. & Szostak, J. W. Functional RNAs exhibit tolerance for non-heritable 2′-5′ versus 3′-5′ backbone heterogeneity. Nature Chem. 5, 390–394 (2013).

    CAS  Google Scholar 

  21. Manrubia, S. C. & Briones, C. Modular evolution and increase of functional complexity in replicating RNA molecules. RNA 13, 97–107 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Briones, C., Stich, M. & Manrubia, S. C. The dawn of the RNA World: toward functional complexity through ligation of random RNA oligomers. RNA 15, 743–749 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Buzayan, J. M., Gerlach, W. L. & Bruening, G. Non-enzymatic cleavage and ligation of RNAs complementary to a plant virus satellite RNA. Nature 323, 349–353 (1986).

    CAS  Google Scholar 

  24. Kath-Schorr, S. et al. General acid-base catalysis mediated by nucleobases in the hairpin ribozyme. J. Am. Chem. Soc. 134, 16717–16724 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Butcher, S. E., Heckman, J. E. & Burke, J. M. Reconstitution of hairpin ribozyme activity following separation of functional domains. J. Biol. Chem. 270, 29648–29651 (1995).

    CAS  PubMed  Google Scholar 

  26. Nesbitt, S. M., Erlacher, H. A. & Fedor, M. J. The internal equilibrium of the hairpin ribozyme: temperature, ion and pH effects. J. Mol. Biol. 286, 1009–1024 (1999).

    CAS  PubMed  Google Scholar 

  27. Vlassov, A. V., Johnston, B. H., Landweber, L. F. & Kazakov, S. A. Ligation activity of fragmented ribozymes in frozen solution: implications for the RNA world. Nucleic Acids Res. 32, 2966–2974 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kazakov, S. A., Balatskaya, S. V. & Johnston, B. H. Ligation of the hairpin ribozyme in cis induced by freezing and dehydration. RNA 12, 446–456 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Mutschler, H. & Holliger, P. Non-canonical 3′-5′ extension of RNA with prebiotically plausible ribonucleoside 2′,3′-cyclic phosphates. J. Am. Chem. Soc. 136, 5193–5196 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Attwater, J., Wochner, A., Pinheiro, V. B., Coulson, A. & Holliger, P. Ice as a protocellular medium for RNA replication. Nature Commun. 1, 76 (2010).

    Google Scholar 

  31. Zhuang, X. et al. Correlating structural dynamics and function in single ribozyme molecules. Science 296, 1473–1476 (2002).

    CAS  PubMed  Google Scholar 

  32. Okumus, B., Wilson, T. J., Lilley, D. M. & Ha, T. Vesicle encapsulation studies reveal that single molecule ribozyme heterogeneities are intrinsic. Biophys. J. 87, 2798–2806 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Russell, R. RNA misfolding and the action of chaperones. Front. Biosci. 13, 1–20 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Bartel, D. P. & Szostak, J. W. Isolation of new ribozymes from a large pool of random sequences [see comment]. Science 261, 1411–1418 (1993).

    CAS  PubMed  Google Scholar 

  35. Dropulic, B., Lin, N. H. & Jeang, K. T. A method to increase the cumulative cleavage efficiency of ribozymes: thermal cycling. Nucleic Acids Res. 21, 2273–2274 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Li, Y. & Breaker, R. R. Kinetics of RNA degradation by specific base catalysis of transesterification involving the 2′-hydroxyl group. J. Am. Chem. Soc. 121, 5364–5372 (1999).

    CAS  Google Scholar 

  37. Eftink, M. R. & Biltonen, R. L. Energetics of ribonuclease A catalysis. 2. Nonenzymatic hydrolysis of cytidine cyclic 2′,3′-phosphate. Biochemistry 22, 5134–5140 (1983).

    CAS  PubMed  Google Scholar 

  38. Murray, J. B., Seyhan, A. A., Walter, N. G., Burke, J. M. & Scott, W. G. The hammerhead, hairpin and VS ribozymes are catalytically proficient in monovalent cations alone. Chem. Biol. 5, 587–595 (1998).

    CAS  PubMed  Google Scholar 

  39. Paudel, B. P. & Rueda, D. Molecular crowding accelerates ribozyme docking and catalysis. J. Am. Chem. Soc. 136, 16700–16703 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hampel, K. J. & Burke, J. M. A conformational change in the ‘loop E-like’ motif of the hairpin ribozyme is coincidental with domain docking and is essential for catalysis. Biochemistry 40, 3723–3729 (2001).

    CAS  PubMed  Google Scholar 

  41. Flores, R. et al. Rolling-circle replication of viroids, viroid-like satellite RNAs and hepatitis delta virus: variations on a theme. RNA Biol. 8, 200–206 (2011).

    CAS  PubMed  Google Scholar 

  42. Riley, C. A. & Lehman, N. Generalized RNA-directed recombination of RNA. Chem. Biol. 10, 1233–1243 (2003).

    CAS  PubMed  Google Scholar 

  43. Gabellieri, E. & Strambini, G. B. Perturbation of protein tertiary structure in frozen solutions revealed by 1-anilino-8-naphthalene sulfonate fluorescence. Biophys. J. 85, 3214–3220 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Strambini, G. B. & Gabellieri, E. Proteins in frozen solutions: evidence of ice-induced partial unfolding. Biophys. J. 70, 971–976 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Kolhe, P., Amend, E. & Singh, S. K. Impact of freezing on pH of buffered solutions and consequences for monoclonal antibody aggregation. Biotechnol. Prog. 26, 727–733 (2010).

    CAS  PubMed  Google Scholar 

  46. Watanabe, H., Otsuka, T., Harada, M. & Okada, T. Imbalance between anion and cation distribution at ice interface with liquid phase in frozen electrolyte as evaluated by fluorometric measurements of pH. J. Phys. Chem. C 118, 15723–15731 (2014).

    CAS  Google Scholar 

  47. Miller, S. & Lazcano, A. The origin of life—did it occur at high temperatures? J. Mol. Evol. 41, 689–692 (1995).

    CAS  PubMed  Google Scholar 

  48. Bada, J. L. How life began on Earth: a status report. Earth Planet. Sci. Lett. 226, 1–15 (2004).

    CAS  Google Scholar 

  49. Kreysing, M., Keil, L., Lanzmich, S. & Braun, D. Heat flux across an open pore enables the continuous replication and selection of oligonucleotides towards increasing length. Nature Chem. 7, 203–208 (2015).

    CAS  Google Scholar 

  50. Loffler, P. M., Groen, J., Dorr, M. & Monnard, P. A. Sliding over the blocks in enzyme-free RNA copying—one-pot primer extension in ice. PloS ONE 8, e75617 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Szostak, J. W. An optimal degree of physical and chemical heterogeneity for the origin of life? Phil. Trans. R. Soc. Lond. B 366, 2894–2901 (2011).

    CAS  Google Scholar 

  52. Meyer, A. J., Ellefson, J. W. & Ellington, A. D. Abiotic self-replication. Acc. Chem. Res. 45, 2097–2105 (2012).

    CAS  PubMed  Google Scholar 

  53. Gollihar, J., Levy, M. & Ellington, A. D. Biochemistry. Many paths to the origin of life. Science 343, 259–260 (2014).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank J. Attwater for discussions and comments on the manuscript. This work was supported by a Federation of European Biochemical Societies (FEBS) long-term fellowship (H.M.) and by the Medical Research Council (A.W. and P.H., program no. U105178804).

Author information

Authors and Affiliations

Authors

Contributions

H.M., A.W. and P.H. conceived and designed the experiments. A.W. performed the in-ice invasion of the stem–loop structure (Supplementary Fig. 5). H.M. performed and analysed all the other experiments. All the authors discussed the results, and wrote and commented on the manuscript.

Corresponding author

Correspondence to Philipp Holliger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 6101 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mutschler, H., Wochner, A. & Holliger, P. Freeze–thaw cycles as drivers of complex ribozyme assembly. Nature Chem 7, 502–508 (2015). https://doi.org/10.1038/nchem.2251

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2251

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing