Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Introducing structural sensitivity into adsorption–energy scaling relations by means of coordination numbers

Abstract

The search for improved heterogeneous catalysts is an important but difficult task. Scaling relations between the adsorption energies of reaction intermediates greatly facilitate the computational design of catalysts. However, this methodology does not currently incorporate structure sensitivity and hence cannot describe adequately the overall activity of realistic catalyst particles and extended surfaces with several facets, edges and apices. Here, we generalize scaling relations by examining twelve different low-index, stepped and kinked surfaces of nine transition metals. This allows us to quantify the effect of the adsorption-site geometry on these relations, ensures a full prediction of their parameters, and helps in identifying intrinsic thermodynamic restrictions to the performance of catalysts. The resulting fully predictable, structure-sensitive scaling relations are a step towards the long-sought rational design of multifaceted catalytic particles. Such a design can now target not only the chemical nature of active materials but also the actual geometry of their active sites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematics of the twelve surface sites included in this study.
Figure 2: Scaling relations between oxygen and oxygenates generalized for twelve different types of surface site on nine transition metals.
Figure 3: Structure–energy relations for atomic oxygen and oxygenates.
Figure 4: Scaling relations between the adsorption energies of oxygenates: *OOH versus *OH (diamonds) and *OCH3 versus *OH (triangles).
Figure 5: Comparison between the energies of adsorption (ΔEDFT) of oxygenates calculated with DFT and energies estimated using universal scaling relations (ΔEpredicted).

Similar content being viewed by others

References

  1. Hammer, B. & Nørskov, J. K. in Advances in Catalysis Vol. 45 (eds Bruce, C. & Gates, H. K.) 71–129 (Academic, 2000).

    Google Scholar 

  2. Van Santen, R. A. & Neurock, M. Concepts in theoretical heterogeneous catalytic reactivity. Catal. Rev. Sci. Eng. 37, 557–698 (1995).

    CAS  Google Scholar 

  3. Norskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational design of solid catalysts. Nature Chem. 1, 37–46 (2009).

    CAS  Google Scholar 

  4. Greeley, J., Jaramillo, T. F., Bonde, J., Chorkendorff, I. & Norskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nature Mater. 5, 909–913 (2006).

    CAS  Google Scholar 

  5. Greeley, J. & Mavrikakis, M. Alloy catalysts designed from first principles. Nature Mater. 3, 810–815 (2004).

    CAS  Google Scholar 

  6. Greeley, J. et al. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nature Chem. 1, 552–556 (2009).

    CAS  Google Scholar 

  7. Medford, A. J. et al. Assessing the reliability of calculated catalytic ammonia synthesis rates. Science 345, 197–200 (2014).

    CAS  PubMed  Google Scholar 

  8. Abild-Pedersen, F. et al. Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys. Rev. Lett. 99, 016105 (2007).

    CAS  PubMed  Google Scholar 

  9. Montemore, M. M. & Medlin, J. W. Scaling relations between adsorption energies for computational screening and design of catalysts. Catal. Sci. Technol. 4, 3748–3761 (2014).

    CAS  Google Scholar 

  10. Fu, Q., Cao, X. & Luo, Y. Identification of the scaling relations for binary noble-metal nanoparticles. J. Phys. Chem. C 117, 2849–2854 (2013).

    CAS  Google Scholar 

  11. Fernández, E. M. et al. Scaling relationships for adsorption energies on transition metal oxide, sulfide, and nitride surfaces. Angew. Chem. Int. Ed. 47, 4683–4686 (2008).

    Google Scholar 

  12. Vojvodic, A., Hellman, A., Ruberto, C. & Lundqvist, B. I. From electronic structure to catalytic activity: a single descriptor for adsorption and reactivity on transition-metal carbides. Phys. Rev. Lett. 103, 146103 (2009).

    CAS  PubMed  Google Scholar 

  13. Calle-Vallejo, F., Martínez, J. I., García-Lastra, J. M., Abad, E. & Koper, M. T. M. Oxygen reduction and evolution at single-metal active sites: comparison between functionalized graphitic materials and protoporphyrins. Surf. Sci. 607, 47–53 (2013).

    CAS  Google Scholar 

  14. Calle-Vallejo, F., Martinez, J. I. & Rossmeisl, J. Density functional studies of functionalized graphitic materials with late transition metals for oxygen reduction reactions. Phys. Chem. Chem. Phys. 13, 15639–15643 (2011).

    CAS  PubMed  Google Scholar 

  15. Calle-Vallejo, F., Martinez, J. I., Garcia-Lastra, J. M., Rossmeisl, J. & Koper, M. T. M. Physical and chemical nature of the scaling relations between adsorption energies of atoms on metal surfaces. Phys. Rev. Lett. 108, 116103 (2012).

    CAS  PubMed  Google Scholar 

  16. Man, I. C. et al. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3, 1159–1165 (2011).

    CAS  Google Scholar 

  17. Calle-Vallejo, F. & Koper, M. T. M. First-principles computational electrochemistry: achievements and challenges. Electrochim. Acta 84, 3–11 (2012).

    CAS  Google Scholar 

  18. Stephens, I. E. L., Bondarenko, A. S., Gronbjerg, U., Rossmeisl, J. & Chorkendorff, I. Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy Environ. Sci. 5, 6744–6762 (2012).

    CAS  Google Scholar 

  19. Viswanathan, V., Hansen, H. A., Rossmeisl, J. & Nørskov, J. K. Universality in oxygen reduction electrocatalysis on metal surfaces. ACS Catal. 2, 1654–1660 (2012).

    CAS  Google Scholar 

  20. Hummelshøj, J. S., Abild-Pedersen, F., Studt, F., Bligaard, T. & Nørskov, J. K. CatApp: a web application for surface chemistry and heterogeneous catalysis. Angew. Chem. Int. Ed. 51, 272–274 (2012).

    Google Scholar 

  21. Calle-Vallejo, F. & Koper, M. T. M. Theoretical considerations on the electroreduction of CO to C2 species on Cu(100) electrodes. Angew. Chem. Int. Ed. 52, 7282–7285 (2013).

    CAS  Google Scholar 

  22. Peterson, A. A. & Nørskov, J. K. Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J. Phys. Chem. Lett. 3, 251–258 (2012).

    CAS  Google Scholar 

  23. Nie, X., Esopi, M. R., Janik, M. J. & Asthagiri, A. Selectivity of CO2 reduction on copper electrodes: the role of the kinetics of elementary steps. Angew. Chem. Int. Ed. 52, 2459–2462 (2013).

    CAS  Google Scholar 

  24. Karp, E. M., Silbaugh, T. L. & Campbell, C. T. Bond energies of molecular fragments to metal surfaces track their bond energies to H atoms. J. Am. Chem. Soc. 136, 4137–4140 (2014).

    CAS  PubMed  Google Scholar 

  25. Calle-Vallejo, F., Martínez, J. I., García-Lastra, J. M., Sautet, P. & Loffreda, D. Fast prediction of adsorption properties for platinum nanocatalysts with generalized coordination numbers. Angew. Chem. Int. Ed. 53, 8316–8319 (2014).

    CAS  Google Scholar 

  26. Peterson, A. et al. Finite-size effects in O and CO adsorption for the late transition metals. Top. Catal. 55, 1276–1282 (2012).

    CAS  Google Scholar 

  27. Mpourmpakis, G., Andriotis, A. N. & Vlachos, D. G. Identification of descriptors for the CO interaction with metal nanoparticles. Nano Lett. 10, 1041–1045 (2010).

    CAS  PubMed  Google Scholar 

  28. Li, H., Li, Y., Koper, M. T. M. & Calle-Vallejo, F. Bond-making and breaking between carbon, nitrogen, and oxygen in electrocatalysis. J. Am. Chem. Soc. 136, 15694–15701 (2014).

    CAS  PubMed  Google Scholar 

  29. Shustorovich, E. & Sellers, H. The UBI-QEP method: a practical theoretical approach to understanding chemistry on transition metal surfaces. Surf. Sci. Rep. 31, 1–119 (1998).

    CAS  Google Scholar 

  30. Koper, M. T. M. Thermodynamic theory of multi-electron transfer reactions: implications for electrocatalysis. J. Electroanal. Chem. 660, 254–260 (2011).

    CAS  Google Scholar 

  31. Calle-Vallejo, F. et al. Number of outer electrons as descriptor for adsorption processes on transition metals and their oxides. Chem. Sci. 4, 1245–1249 (2013).

    CAS  Google Scholar 

  32. Cheng, J. & Hu, P. Theory of the kinetics of chemical potentials in heterogeneous catalysis. Angew. Chem. Int. Ed. 50, 7650–7654 (2011).

    CAS  Google Scholar 

  33. Liu, B. & Greeley, J. Decomposition pathways of glycerol via C–H, O–H, and C–C bond scission on Pt(111): a density functional theory study. J. Phys. Chem. C 115, 19702–19709 (2011).

    CAS  Google Scholar 

  34. Salciccioli, M., Chen, Y. & Vlachos, D. G. Density functional theory-derived group additivity and linear scaling methods for prediction of oxygenate stability on metal catalysts: adsorption of open-ring alcohol and polyol dehydrogenation intermediates on Pt-based metals. J. Phys. Chem. C 114, 20155–20166 (2010).

    CAS  Google Scholar 

  35. Michalsky, R., Zhang, Y-J., Medford, A. J. & Peterson, A. A. Departures from the adsorption energy scaling relations for metal carbide catalysts. J. Phys. Chem. C 118, 13026–13034 (2014).

    CAS  Google Scholar 

  36. Siahrostami, S. et al. Enabling direct H2O2 production through rational electrocatalyst design. Nature Mater. 12, 1137–1143 (2013).

    CAS  Google Scholar 

  37. Hansen, H. A., Varley, J. B., Peterson, A. A. & Nørskov, J. K. Understanding trends in the electrocatalytic activity of metals and enzymes for CO2 reduction to CO. J. Phys. Chem. Lett. 4, 388–392 (2013).

    CAS  PubMed  Google Scholar 

  38. Halck, N. B., Petrykin, V., Krtil, P. & Rossmeisl, J. Beyond the volcano limitations in electrocatalysis—oxygen evolution reaction. Phys. Chem. Chem. Phys. 16, 13682–13688 (2014).

    CAS  PubMed  Google Scholar 

  39. Adić, R. R., Marković, N. M. & Vešović, V. B. Structural effects in electrocatalysis: oxygen reduction on the Au (100) single crystal electrode. J. Electroanal. Chem. Interfacial Electrochem. 165, 105–120 (1984).

    Google Scholar 

  40. Adžić, R. R., Strbac, S. & Anastasijević, N. Electrocatalysis of oxygen on single crystal gold electrodes. Mater. Chem. Phys. 22, 349–375 (1989).

    Google Scholar 

  41. Gattrell, M., Gupta, N. & Co, A. A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. J. Electroanal. Chem. 594, 1–19 (2006).

    CAS  Google Scholar 

  42. Hori, Y., Takahashi, I., Koga, O. & Hoshi, N. Selective formation of C2 compounds from electrochemical reduction of CO2 at a series of copper single crystal electrodes. J. Phys. Chem. B 106, 15–17 (2001).

    Google Scholar 

  43. Li, H. et al. Why (100) terraces break and make bonds: oxidation of dimethyl ether on platinum single-crystal electrodes. J. Am. Chem. Soc. 135, 14329–14338 (2013).

    CAS  PubMed  Google Scholar 

  44. Vidal-Iglesias, F. J., García-Aráez, N., Montiel, V., Feliu, J. M. & Aldaz, A. Selective electrocatalysis of ammonia oxidation on Pt(100) sites in alkaline medium. Electrochem. Commun. 5, 22–26 (2003).

    CAS  Google Scholar 

  45. Vidal-Iglesias, F. J., Solla-Gullón, J., Montiel, V., Feliu, J. M. & Aldaz, A. Ammonia selective oxidation on Pt(100) sites in an alkaline medium. J. Phys. Chem. B 109, 12914–12919 (2005).

    CAS  PubMed  Google Scholar 

  46. Norskov, J. K. et al. The nature of the active site in heterogeneous metal catalysis. Chem. Soc. Rev. 37, 2163–2171 (2008).

    CAS  PubMed  Google Scholar 

  47. Kurth, S., Perdew, J. P. & Blaha, P. Molecular and solid-state tests of density functional approximations: LSD, GGAs, and meta-GGAs. Int. J. Quantum Chem. 75, 889–909 (1999).

    CAS  Google Scholar 

  48. Jones, G., Studt, F., Abild-Pedersen, F., Nørskov, J. K. & Bligaard, T. Scaling relationships for adsorption energies of C2 hydrocarbons on transition metal surfaces. Chem. Eng. Sci. 66, 6318–6323 (2011).

    CAS  Google Scholar 

  49. Wang, S. et al. Universal transition state scaling relations for (de)hydrogenation over transition metals. Phys. Chem. Chem. Phys. 13, 20760–20765 (2011).

    CAS  PubMed  Google Scholar 

  50. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Google Scholar 

  51. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 78, 1396–1396 (1997).

    CAS  Google Scholar 

  52. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    CAS  Google Scholar 

  53. Methfessel, M. & Paxton, A. T. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 40, 3616–3621 (1989).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the EU, grant n°303419 (PUMA MIND). The authors thank NCF, IDRIS, CINES and PSMN for CPU time and assistance. The authors thank A. Bandarenka and J.M. García-Lastra for critical reading of this article.

Author information

Authors and Affiliations

Authors

Contributions

F.C-V. made all of the DFT calculations. All authors participated in the discussion of the results and the writing of the manuscript.

Corresponding authors

Correspondence to Federico Calle-Vallejo or Philippe Sautet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 507 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calle-Vallejo, F., Loffreda, D., Koper, M. et al. Introducing structural sensitivity into adsorption–energy scaling relations by means of coordination numbers. Nature Chem 7, 403–410 (2015). https://doi.org/10.1038/nchem.2226

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2226

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing