Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quantum dynamical resonances in low-energy CO(j = 0) + He inelastic collisions

Subjects

Abstract

In molecular collisions, long-lived complexes may be formed that correspond to quasi-bound states in the van der Waals potential and give rise to peaks in the collision energy-dependent cross-sections. They are known as ‘resonances’ and their experimental detection remains difficult because their signatures are extremely challenging to resolve. Here, we show a complete characterization of quantum-dynamical resonances occurring in CO–He inelastic collisions with rotational CO(j = 0  1) excitation. Crossed-beam scattering experiments were performed at collision energies as low as 4 cm−1, equivalent to a temperature of 4 K. Resonance structures in the measured cross-sections were identified by comparison with quantum-mechanical calculations. The excellent agreement found confirms that the potential energy surfaces describing the CO–He van der Waals interaction are perfectly suitable for calculating state-to-state (de)excitation rate coefficients at the very low temperatures needed in chemical modelling of the interstellar medium. We also computed these rate coefficients.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Effective potentials illustrating shape and Feshbach resonances.
Figure 2: Temporal profiles of the CO beam in the beam crossing region.
Figure 3: Experimental and theoretical cross-sections for CO(j = 0) + He  CO(j = 1) + He inelastic collisions.
Figure 4: Wavefunctions squared, at the resonance energy, as a function of radial distance.

References

  1. Levine, R. D. & Bernstein, R. B. Molecular Reaction Dynamics and Chemical Reactivity (Oxford Univ. Press, 1987).

    Google Scholar 

  2. Wernli, M. et al. Improved low-temperature rate constants for rotational excitation of CO by H2 . Astron. Astrophys. 446, 367–372 (2006).

    Article  CAS  Google Scholar 

  3. Cecchi-Pestellini, C., Bodo, E., Balakrishnan, N. & Dalgarno, A. Rotational and vibrational excitation of CO molecules by collisions with 4He atoms. Astrophys. J. 571, 1015–1020 (2002).

    Article  CAS  Google Scholar 

  4. Chefdeville, S. et al. Appearance of low energy resonances in CO–para-H2 inelastic collisions. Phys. Rev. Lett. 109, 023201 (2012).

    Article  Google Scholar 

  5. Chefdeville, S. et al. Observation of partial wave resonances in low-energy O2–H2 inelastic collisions. Science 341, 1094–1096 (2013).

    Article  CAS  Google Scholar 

  6. Lique, F. et al. Collisional excitation of O2 by H2: the validity of LTE models in interpreting O2 observations. Astron. Astrophys. 567, A22 (2014).

    Article  Google Scholar 

  7. Lique, F. Temperature dependence of the fine-structure resolved rate coefficients for collisions of O2(X3Σg) with He. J. Chem. Phys. 132, 044311 (2010).

    Article  Google Scholar 

  8. Kalugina, Y., Kłos, J. & Lique, F. Collisional excitation of CN(X2Σ+) by para- and ortho-H2: fine-structure resolved transitions. J. Chem. Phys. 139, 074301 (2013).

    Article  Google Scholar 

  9. Lique, F. et al. Rotational excitation of CN(X2Σ+) by He: theory and comparison with experiments. J. Chem. Phys. 132, 024303 (2010).

    Article  Google Scholar 

  10. Gubbels, K. B. et al. Resonances in rotationally inelastic scattering of OH(X2Π) with helium and neon. J. Chem. Phys. 136, 144308 (2012).

    Article  Google Scholar 

  11. Yang, B. & Stancil, P. C. Close-coupling study of rotational energy transfer and differential scattering in H2O collisions with He atoms. J. Chem. Phys. 126, 154306 (2007).

    Article  Google Scholar 

  12. Scribano, Y., Faure, A. & Wiesenfeld, L. Rotational excitation of interstellar heavy water by hydrogen molecules. J. Chem. Phys. 133, 231105 (2010).

    Article  Google Scholar 

  13. Gubbels, K. B., van de Meerakker, S. Y. T., Groenenboom, G. C., Meijer, G. & van der Avoird, A. Scattering resonances in slow NH3–He collisions. J. Chem. Phys. 136, 074301 (2012).

    Article  Google Scholar 

  14. Chandler, D. W. Cold and ultracold molecules: spotlight on orbiting resonances. J. Chem. Phys. 132, 110901 (2010).

    Article  Google Scholar 

  15. Casavecchia, P. & Alexander, M. H. Uncloaking the quantum nature of inelastic molecular collisions. Science 341, 1076–1077 (2013).

    Article  CAS  Google Scholar 

  16. Liu, K. in Advances in Chemical Physics Vol. 149 (eds Rice, S. A. & Dinner, A. R.) 1–46 (Wiley, 2012).

    Book  Google Scholar 

  17. Naulin, C. & Costes, M. Experimental search for scattering resonances in near cold molecular collisions. Int. Rev. Phys. Chem. 33, 427–446 (2014).

    Article  CAS  Google Scholar 

  18. Henson, A. B., Gersten, S., Shagam, Y., Narevicius, J. & Narevicius, E. Observation of resonances in Penning ionization reactions at sub-kelvin temperatures in merged beams. Science 338, 234–238 (2012).

    Article  CAS  Google Scholar 

  19. Lavert-Ofir, E. et al. Observation of the isotope effect in sub-kelvin reactions. Nature Chem. 6, 332–335 (2014).

    Article  CAS  Google Scholar 

  20. Jankunas, J., Bertsche, B., Jachymski, K., Hapka, M. & Osterwalder, A. Dynamics of gas phase Ne*+NH3 and Ne*+ND3 Penning ionisation at low temperatures. J. Chem. Phys. 140, 244302 (2014).

    Article  Google Scholar 

  21. Schutte, A., Bassi, D., Tommasini, F. & Scoles, G. Orbiting resonances in the scattering of H atoms by mercury at thermal energies. Phys. Rev. Lett. 29, 979–982 (1972).

    Article  CAS  Google Scholar 

  22. Toennies, J. P., Welz, W. & Wolf, G. Molecular beam scattering studies of orbiting resonances and the determination of van der Waals potentials for H–Ne, Ar, Kr, and Xe and for H2–Ar, Kr, and Xe. J. Chem. Phys. 71, 614–642 (1979).

    Article  CAS  Google Scholar 

  23. Antonova, S., Lin, A., Tsakotellis, A. P. & McBane, G. C. State to state He–CO rotationally inelastic scattering. J. Chem. Phys. 110, 2384–2390 (1999).

    Article  CAS  Google Scholar 

  24. Fujii, A., Ebata, T. & Ito, M. Production of rotationally state selected ions by resonant enhanced multiphoton ionization of CO in a supersonic free jet. Chem. Phys. Lett. 161, 93–97 (1989).

    Article  CAS  Google Scholar 

  25. Hines, M. A., Michelsen, H. A. & Zare, R. N. 2+1 resonantly enhanced multiphoton ionization of CO via the E1Π–X1Σ+ transition: from measured ion signals to quantitative population distributions. J. Chem. Phys. 93, 8557–8564 (1990).

    Article  CAS  Google Scholar 

  26. Peterson, K. A. & McBane, G. C. A hierarchical family of three-dimensional potential energy surfaces for He–CO. J. Chem. Phys. 123, 084314 (2005); erratum 124, 229901 (2006).

    Article  Google Scholar 

  27. Heijmen, T. G. A., Moszynski, R., Wormer, P. E. S. & van der Avoird, A. A new He–CO interaction energy surface with vibrational coordinate dependence. I. Ab initio potential and infrared spectrum. J. Chem. Phys. 107, 9921–9928 (1997).

    Article  CAS  Google Scholar 

  28. Pentlehner, D. et al. Rapidly pulsed helium droplet source. Rev. Sci. Instrum. 80, 043302 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

This work extends the objectives of the ANR-12-BS05-0011-02 contract with the Agence Nationale de la Recherche and contract no. 2007.1221 with the Conseil Régional d'Aquitaine, for which financial support is acknowledged. The authors acknowledge support from Partenariat Hubert Curien van Gogh (contract 2013-28484TH). The authors thank L. Song for help with scattering calculations on the full three-dimensional SAPT potential and N. Balakrishnan for checking the results of ref. 3.

Author information

Authors and Affiliations

Authors

Contributions

A.B., C.N. and M.C. carried out the experimental measurements and data analysis. J.O. and A.v.d.A. performed the theoretical calculations. All authors discussed the results and contributed to the manuscript.

Corresponding authors

Correspondence to Ad van der Avoird or Michel Costes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4322 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bergeat, A., Onvlee, J., Naulin, C. et al. Quantum dynamical resonances in low-energy CO(j = 0) + He inelastic collisions. Nature Chem 7, 349–353 (2015). https://doi.org/10.1038/nchem.2204

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2204

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing