An aptamer-functionalized chemomechanically modulated biomolecule catch-and-release system


The efficient extraction of (bio)molecules from fluid mixtures is vital for applications ranging from target characterization in (bio)chemistry to environmental analysis and biomedical diagnostics. Inspired by biological processes that seamlessly synchronize the capture, transport and release of biomolecules, we designed a robust chemomechanical sorting system capable of the concerted catch and release of target biomolecules from a solution mixture. The hybrid system is composed of target-specific, reversible binding sites attached to microscopic fins embedded in a responsive hydrogel that moves the cargo between two chemically distinct environments. To demonstrate the utility of the system, we focus on the effective separation of thrombin by synchronizing the pH-dependent binding strength of a thrombin-specific aptamer with volume changes of the pH-responsive hydrogel in a biphasic microfluidic regime, and show a non-destructive separation that has a quantitative sorting efficiency, as well as the system's stability and amenability to multiple solution recycling.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Design of the chemomechanically modulated biomolecule catch-and-release system.
Figure 2: Computer simulations of the selective binding and release.
Figure 3: Chemomechanically modulated sequential catch and release of thrombin in the microfluidic system.
Figure 4: System performance in multiple oscillation cycles with recycling of the ingoing solution.
Figure 5: Analysis of the components of the top and bottom solutions after cycling.


  1. 1

    Fratzl, P. & Barth, F. G. Biomaterial systems for mechanosensing and actuation. Nature 462, 442–448 (2009).

    CAS  Article  Google Scholar 

  2. 2

    Stuart, M. A. C. et al. Emerging applications of stimuli-responsive polymer materials. Nature Mater. 9, 101–113 (2010).

    Article  Google Scholar 

  3. 3

    Cabodi, M., Chen, Y. F., Turner, S. W. P., Craighead, H. G. & Austin, R. H. Continuous separation of biomolecules by the laterally asymmetric diffusion array with out-of-plane sample injection. Electrophoresis 23, 3496–3503 (2002).

    CAS  Article  Google Scholar 

  4. 4

    Cho, E. J., Collett, J. R., Szafranska, A. E. & Ellington, A. D. Optimization of aptamer microarray technology for multiple protein targets. Anal. Chim. Acta 564, 82–90 (2006).

    CAS  Article  Google Scholar 

  5. 5

    Eigen, M. & Rigler, R. Sorting single molecules—application to diagnostics and evolutionary biotechnology. Proc. Natl Acad. Sci. USA 91, 5740–5747 (1994).

    CAS  Article  Google Scholar 

  6. 6

    Song, Y. A., Hsu, S., Stevens, A. L. & Han, J. Y. Continuous-flow pI-based sorting of proteins and peptides in a microfluidic chip using diffusion potential. Anal. Chem. 78, 3528–3536 (2006).

    CAS  Article  Google Scholar 

  7. 7

    Fu, J., Mao, P. & Han, J. Artificial molecular sieves and filters: a new paradigm for biomolecule separation. Trends Biotechnol. 26, 311–320 (2008).

    CAS  Article  Google Scholar 

  8. 8

    He, X., Li, C., Chen, F. G. & Shi, G. Q. Polypyrrole microtubule actuators for seizing and transferring microparticles. Adv. Funct. Mater. 17, 2911–2917 (2007).

    CAS  Article  Google Scholar 

  9. 9

    Zhao, Q., Li, X-F. & Le, X. C. Aptamer capturing of enzymes on magnetic beads to enhance assay specificity and sensitivity. Anal. Chem. 83, 9234–9236 (2011).

    CAS  Article  Google Scholar 

  10. 10

    Levy-Nissenbaum, E., Radovic-Moreno, A. F., Wang, A. Z., Langer, R. & Farokhzad, O. C. Nanotechnology and aptamers: applications in drug delivery. Trends Biotechnol. 26, 442–449 (2008).

    CAS  Article  Google Scholar 

  11. 11

    Sengupta, S. et al. Self-powered enzyme micropumps. Nature Chem. 6, 415–422 (2014).

    CAS  Article  Google Scholar 

  12. 12

    Koga, S., Williams, D. S., Perriman, A. W. & Mann, S. Peptide–nucleotide microdroplets as a step towards a membrane-free protocell model. Nature Chem. 3, 720–724 (2011).

    CAS  Article  Google Scholar 

  13. 13

    Maitz, M. F. et al. Bio-responsive polymer hydrogels homeostatically regulate blood coagulation. Nature Commun. 4, 2168 (2013).

    Article  Google Scholar 

  14. 14

    Rodriguez-Llansola, F. & Meijer, E. W. Supramolecular autoregulation. J. Am. Chem. Soc. 135, 6549–6553 (2013).

    CAS  Article  Google Scholar 

  15. 15

    Wang, J. B. & Feringa, B. L. Dynamic control of chiral space in a catalytic asymmetric reaction using a molecular motor. Science 331, 1429–1432 (2011).

    CAS  Article  Google Scholar 

  16. 16

    Wilson, D. A., Nolte, R. J. M. & van Hest, J. C. M. Autonomous movement of platinum-loaded stomatocytes. Nature Chem. 4, 268–274 (2012).

    CAS  Article  Google Scholar 

  17. 17

    He, X. et al. Synthetic homeostatic materials displaying chemo-mechano-chemical self-regulation. Nature 487, 214–218 (2012).

    CAS  Article  Google Scholar 

  18. 18

    de Ruiter, G. & van der Boom, M. E. Surface-confined assemblies and polymers for molecular logic. Acc. Chem. Res. 44, 563–573 (2011).

    CAS  Article  Google Scholar 

  19. 19

    Krieg, E., Weissman, H., Shirman, E., Shimoni, E. & Rybtchinski, B. A recyclable supramolecular membrane for size-selective separation of nanoparticles. Nature Nanotech. 6, 141–146 (2011).

    CAS  Article  Google Scholar 

  20. 20

    Hirokawa, N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279, 519–526 (1998).

    CAS  Article  Google Scholar 

  21. 21

    Cho, E. J., Lee, J. W. & Ellington, A. D. Applications of aptamers as sensors. Ann. Rev. Anal. Chem. 2, 241–264 (2009).

    CAS  Article  Google Scholar 

  22. 22

    Mosing, R. K. & Bowser, M. T. Microfluidic selection and applications of aptamers. J. Sep. Sci. 30, 1420–1426 (2007).

    CAS  Article  Google Scholar 

  23. 23

    Jeong, B. & Gutowska, A. Lessons from nature: stimuli-responsive polymers and their biomedical applications. Trends Biotechnol. 20, 305–311 (2002).

    CAS  Article  Google Scholar 

  24. 24

    Yerushalmi, R., Scherz, A., van der Boom, M. E. & Kraatz, H. B. Stimuli responsive materials: new avenues toward smart organic devices. J. Mater. Chem. 15, 4480–4487 (2005).

    CAS  Article  Google Scholar 

  25. 25

    Krieg, E. et al. Supramolecular gel based on a perylene diimide dye: multiple stimuli responsiveness, robustness, and photofunction. J. Am. Chem. Soc. 131, 14365–14373 (2009).

    CAS  Article  Google Scholar 

  26. 26

    Macaya, R. F., Schultze, P., Smith, F. W., Roe, J. A. & Feigon, J. Thrombin-binding DNA aptamer forms a unimolecular quadruplex structure in solution. Proc. Natl Acad. Sci. USA 90, 3745–3749 (1993).

    CAS  Article  Google Scholar 

  27. 27

    Tasset, D. M., Kubik, M. F. & Steiner, W. Oligonucleotide inhibitors of human thrombin that bind distinct epitopes. J. Mol. Biol. 272, 688–698 (1997).

    CAS  Article  Google Scholar 

  28. 28

    Srinivas, R. L., Chapin S. C. & Doyle, P. S. Aptamer-functionalized microgel particles for protein detection. Anal. Chem. 83, 9138–9145 (2011).

    CAS  Article  Google Scholar 

  29. 29

    Cheng, M. M. C. et al. Nanotechnologies for biomolecular detection and medical diagnostics. Curr. Opin. Chem. Biol. 10, 11–19 (2006).

    CAS  Article  Google Scholar 

  30. 30

    Guo, M. T., Rotem, A., Heyman, J. A. & Weitz, D. A. Droplet microfluidics for high-throughput biological assays. Lab Chip 12, 2146–2155 (2012).

    CAS  Article  Google Scholar 

  31. 31

    Martinez, A. W., Phillips, S. T., Whitesides, G. M. & Carrilho, E. Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal. Chem. 82, 3–10 (2010).

    CAS  Article  Google Scholar 

  32. 32

    Dick, L. W. & McGown, L. B. Aptamer-enhanced laser desorption/ionization for affinity mass spectrometry. Anal. Chem. 76, 3037–3041 (2004).

    CAS  Article  Google Scholar 

  33. 33

    He, X., Friedlander, R. S., Zarzar, L. D. & Aizenberg, J. Chemo-mechanically regulated oscillation of an enzymatic reaction. Chem. Mater. 25, 521–523 (2013).

    CAS  Article  Google Scholar 

  34. 34

    Bhattacharya, A. & Balazs, A. C. Stiffness-modulated motion of soft microscopic particles over active adhesive cilia. Soft Matter 9, 3945–3955 (2013).

    CAS  Article  Google Scholar 

  35. 35

    Hianik, T. O. V., Sonlajtnerova, M. & Grman, I. Influence of ionic strength, pH and aptamer configuration for binding affinity to thrombin. Bioelectrochemistry 70, 127–133 (2007).

    CAS  Article  Google Scholar 

  36. 36

    Baldrich, E., Restrepo, A. & O'Sullivan, C. K. Aptasensor development: elucidation of critical parameters for optimal aptamer performance. Anal. Chem. 76, 7053–7063 (2004).

    CAS  Article  Google Scholar 

  37. 37

    Bock, L. C., Griffin, L. C., Latham, J. A., Vermaas, E. H. & Toole, J. J. Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 355, 564–566 (1002).

    Article  Google Scholar 

  38. 38

    Zeng, Y. & Harrison, D. J. Self-assembled colloidal arrays as three-dimensional nanofluidic sieves for separation of biomolecules on microchips. Anal. Chem. 79, 2289–2295 (2007).

    CAS  Article  Google Scholar 

  39. 39

    Arakawa, T., Shirasaki, Y., Aoki, T., Funatsu, T. & Shoji, S. Three-dimensional sheath flow sorting microsystem using thermosensitive hydrogel. Sensor Actuator A 135, 99–105 (2007).

    CAS  Article  Google Scholar 

  40. 40

    Doyle, P. S., Bibette, J., Bancaud, A. & Viovy, J. L. Self-assembled magnetic matrices for DNA separation chips. Science 295, 2237–2237 (2002).

    CAS  Article  Google Scholar 

  41. 41

    Pedersen, J., Petersen, G. E., Lauritzen, C. & Arnau, J. Current strategies for the use of affinity tags and tag removal for the purification of recombinant proteins. Protein Expres. Purif. 48, 1–13 (2006).

    Article  Google Scholar 

  42. 42

    Chen, L. et al. Aptamer-mediated efficient capture and release of T lymphocytes on nanostructured surfaces. Adv. Mater. 23, 4376–4380 (2011).

    CAS  Article  Google Scholar 

  43. 43

    Zhang, L., Chatterjee, A. & Leung, K. T. Hydrogen-bond-mediated biomolecular trapping: reversible catch-and-release process of common biomolecules on a glycine-functionalized Si(111)7×7 Surface. J. Phys. Chem. Lett. 1, 3385–3390 (2010).

    CAS  Article  Google Scholar 

  44. 44

    Jayasena, S. D. Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin. Chem. 45, 1628–1650 (1999).

    CAS  PubMed  Google Scholar 

  45. 45

    Wochner, A. et al. A DNA aptamer with high affinity and specificity for therapeutic anthracyclines. Anal. Biochem. 373, 34–42 (2008).

    CAS  Article  Google Scholar 

  46. 46

    Zhai, G., Iskander, M., Barilla, K. & Romaniuk, P. J. Characterization of RNA aptamer binding by the Wilms’ tumor suppressor protein WT1. Biochemistry 40, 2032–2040 (2001).

    CAS  Article  Google Scholar 

  47. 47

    Lin, Y., Qiu, Q., Gill, S. C. & Jayasena, S. D. Modified RNA sequence pools for in vitro selection. Nucleic Acids Res. 22, 5229–5234 (1994).

    CAS  Article  Google Scholar 

  48. 48

    Schurer, H. et al. Aptamers that bind to antibiotic moenomycin A. Bioorg. Med. Chem. 9, 2557–2563 (2001).

    CAS  Article  Google Scholar 

  49. 49

    Li, T., Shi, L., Wang, E. & Dong, S. Multifunctional G-quadruplex aptamers and their applications to protein detection. Chem. Eur. J. 15, 1036–1042 (2009).

    CAS  Article  Google Scholar 

  50. 50

    Fujita, H. et al. Structural and affinity analyses of G-quadruplex DNA aptamers for camptothecin derivatives. Pharmaceuticals 6, 1082–1093 (2013).

    Article  Google Scholar 

Download references


This work was supported by the Department of Energy under Award No. DE-SC0005247. We thank M. Krogsgaard and C. Howell for their help with the XPS characterization of the aptamer functionalization of the microstructures.

Author information




X.H., A.S., L.M.M., M.A., A.C.B. and J.A. designed the project. X.H., A.S., L.M.M., M.A., O.K., A.C.B. and J.A. wrote the manuscript. Y.L., A.B., Y.M., O.K. and A.C.B. performed the computational simulations and analysed the results. L.M.M. and V.H. performed the PAGE experiments and analysis, and participated in synthesizing the DNA aptamers. X.H. and A.S. conducted the catch-and-release experiments in the microfluidic system and performed the ELISA analysis. X.H., A.S., H.N., M.M. and V.H. conducted the ELONA experiments. A.S. performed the experiments to determine the pH-dependent behaviour of the aptamers. X.H. performed a confocal microscopy characterization of the system. Y.V., O.K. and M.A. contributed important discussions to the analysis of the results.

Corresponding authors

Correspondence to Joanna Aizenberg or Ximin He.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2966 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shastri, A., McGregor, L., Liu, Y. et al. An aptamer-functionalized chemomechanically modulated biomolecule catch-and-release system. Nature Chem 7, 447–454 (2015).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing