Supramolecular nesting of cyclic polymers


Advances in template-directed synthesis make it possible to create artificial molecules with protein-like dimensions, directly from simple components. These synthetic macromolecules have a proclivity for self-organization that is reminiscent of biopolymers. Here, we report the synthesis of monodisperse cyclic porphyrin polymers, with diameters of up to 21 nm (750 C–C bonds). The ratio of the intrinsic viscosities for cyclic and linear topologies is 0.72, indicating that these polymers behave as almost ideal flexible chains in solution. When deposited on gold surfaces, the cyclic polymers display a new mode of two-dimensional supramolecular organization, combining encapsulation and nesting; one nanoring adopts a near-circular conformation, thus allowing a second nanoring to be captured within its perimeter, in a tightly folded conformation. Scanning tunnelling microscopy reveals that nesting occurs in combination with stacking when nanorings are deposited under vacuum, whereas when they are deposited directly from solution under ambient conditions there is stacking or nesting, but not a combination of both.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Vernier-template-directed synthesis of nanorings c-P30 and c-P40 and molecular structures of the components.
Figure 2: Product distributions of coupling reactions.
Figure 3: GPC retention times of cyclic and linear porphyrin oligomers plotted against log molecular weight, showing that the rings are more compact than the linear chains.
Figure 4: STM images of nanorings deposited on gold surfaces under UHV.
Figure 5: STM images of c-P30 deposited on Au(111) from solution and imaged under ambient conditions.


  1. 1

    Hunter, C. A. & Anderson, H. L. What is cooperativity? Angew. Chem. Int. Ed. 48, 7488–7499 (2009).

    CAS  Article  Google Scholar 

  2. 2

    Cheng, R. P. Beyond de novo protein design—de novo design of non-natural folded oligomers. Curr. Opin. Struct. Biol. 14, 512–520 (2004).

    CAS  Article  Google Scholar 

  3. 3

    Gan, Q. et al. Helix-rod host–guest complexes with shuttling rates much faster than disassembly. Science 331, 1172–1175 (2011).

    CAS  Article  Google Scholar 

  4. 4

    Sakai, N., Mareda, J. & Matile, S. Artificial β-barrels. Acc. Chem. Res. 41, 1354–1365 (2008).

    CAS  Article  Google Scholar 

  5. 5

    Kondratuk, D. V. et al. Two Vernier-templated routes to a 24-porphyrin nanoring. Angew. Chem. Int. Ed. 51, 6696–6699 (2012).

    CAS  Article  Google Scholar 

  6. 6

    Bartels, L. Tailoring molecular layers at metal surfaces. Nature Chem. 2, 87–95 (2010).

    CAS  Article  Google Scholar 

  7. 7

    Kudernac, T., Lei, S., Elemans, J. A. A. W. & De Feyter, S. Two-dimensional supramolecular self-assembly: nanoporous networks on surfaces. Chem. Soc. Rev. 38, 402–421 (2009).

    CAS  Article  Google Scholar 

  8. 8

    Barth, J. V., Costantini, G. & Kern, K. Engineering atomic and molecular nanostructures at surfaces. Nature 437, 671–679 (2005).

    CAS  Article  Google Scholar 

  9. 9

    Böhringer, M. et al. Two-dimensional self-assembly of supramolecular clusters and chains. Phys. Rev. Lett. 1, 324–327 (1999).

    Article  Google Scholar 

  10. 10

    Yokoyama, T., Yokoyama, S., Kamikado, T., Okuno, Y. & Mashiko, S. Selective assembly on a surface of supramolecular aggregates with controlled size and shape. Nature 413, 619–621 (2001).

    CAS  Article  Google Scholar 

  11. 11

    Barth, J. V. et al. Building supramolecular nanostructures at surfaces by hydrogen bonding. Angew. Chem. Int. Ed. 39, 1230–1234 (2000).

    CAS  Article  Google Scholar 

  12. 12

    Griessl, S., Lackinger, M., Edelwirth, M., Hietschold, M. & Heckl, W. M. Self-assembled two-dimensional molecular host–guest architectures from trimesic acid. Single Mol. 3, 25–31 (2002).

    CAS  Article  Google Scholar 

  13. 13

    Theobald, J. A., Oxtoby, N. S., Phillips, M. A., Champness, N. R. & Beton, P. H. Controlling molecular deposition and layer structure with supramolecular surface assemblies. Nature 424, 1029–1031 (2003).

    CAS  Article  Google Scholar 

  14. 14

    Stepanow, S. et al. Steering molecular organization and host–guest interactions using two-dimensional nanoporous coordination systems. Nature Mater. 3, 229–233 (2004).

    CAS  Article  Google Scholar 

  15. 15

    Griessl, S. J. H. et al. Incorporation and manipulation of coronene in an organic template structure. Langmuir 20, 9403–9407 (2004).

    CAS  Article  Google Scholar 

  16. 16

    Blunt, M. O. et al. Guest-induced growth of a surface-based supramolecular bilayer. Nature Chem. 3, 74–78 (2011).

    CAS  Article  Google Scholar 

  17. 17

    Spillmann, H. et al. Hierarchical assembly of two-dimensional homochiral nanocavity arrays. J. Am. Chem. Soc. 125, 10725–10728 (2003).

    CAS  Article  Google Scholar 

  18. 18

    Furukawa, S. et al. Structural transformation of a two-dimensional molecular network in response to selective guest inclusion. Angew. Chem. Int. Ed. 46, 2831–2834 (2007).

    CAS  Article  Google Scholar 

  19. 19

    Nath, K. G. et al. Rational modulation of the periodicity in linear hydrogen-bonded assemblies of trimesic acid on surfaces. J. Am. Chem. Soc. 128, 4212–4213 (2006).

    CAS  Article  Google Scholar 

  20. 20

    Klappenberger, F. et al. Conformational adaptation in supramolecular assembly on surfaces. ChemPhysChem 8, 1782–1786 (2007).

    CAS  Article  Google Scholar 

  21. 21

    Jung, T. A., Schlittler, R. R. & Gimzewski, J. K. Conformational identification of individual adsorbed molecules with the STM. Nature 386, 696–698 (1997).

    CAS  Article  Google Scholar 

  22. 22

    Taylor, P. N. et al. Conjugated porphyrin oligomers from monomer to hexamer. Chem. Commun. 909–910 (1998).

  23. 23

    Sprafke, J. K. et al. Belt-shaped π-systems: relating geometry to electronic structure in a six-porphyrin nanoring. J. Am. Chem. Soc. 133, 17262–17273 (2011).

    CAS  Article  Google Scholar 

  24. 24

    Saywell, A. et al. Conformation and packing of porphyrin polymer chains deposited using electrospray on a gold surface. Angew. Chem. Int. Ed. 49, 9136–9139 (2010).

    CAS  Article  Google Scholar 

  25. 25

    O'Sullivan, M. C. et al. Vernier templating and synthesis of a 12-porphyrin nanoring. Nature 469, 72–75 (2011).

    CAS  Article  Google Scholar 

  26. 26

    Svatek, S. A. et al. Mechanical stiffening of porphyrin nanorings through supramolecular columnar stacking. Nano Lett. 13, 3391–3395 (2013).

    CAS  Article  Google Scholar 

  27. 27

    Wieland, M. B. et al. Height dependent molecular trapping in stacked cyclic porphyrin nanorings. Chem. Commun. 50, 7332–7335 (2014).

    CAS  Article  Google Scholar 

  28. 28

    Bielawski, C. & Grubbs, R. H. Living ring-opening metathesis polymerization. Prog. Polym. Sci. 32, 1–29 (2007).

    CAS  Article  Google Scholar 

  29. 29

    Semlyen, J. A. Cyclic Polymers 2nd edn (Kluwer Academic, 2000).

    Google Scholar 

  30. 30

    Jia, Z. & Monteiro, M. J. Cyclic polymers: methods and strategies. J. Polym. Sci. Polym. Chem. 50, 2085–2097 (2012).

    CAS  Article  Google Scholar 

  31. 31

    Mayor, M. & Didschies, C. A giant conjugated molecular ring. Angew. Chem. Int. Ed. 42, 3176–3179 (2003).

    CAS  Article  Google Scholar 

  32. 32

    Aggarwal, A. V. et al. Fluctuating exciton localizations in giant π-conjugated spoked-wheel macrocycles. Nature Chem. 5, 964–970 (2013).

    CAS  Article  Google Scholar 

  33. 33

    Hori, T. et al. Synthesis of nanometer-scale porphyrin wheels of variable size. Chem. Eur. J. 14, 582–595 (2008).

    CAS  Article  Google Scholar 

  34. 34

    May, R., Jester, S. & Höger, S. A giant molecular spoked wheel. J. Am. Chem. Soc. 136, 16732–16735 (2014).

    CAS  Article  Google Scholar 

  35. 35

    Hoffmann, M. et al. Enhanced π-conjugation around a porphyrin[6]nanoring. Angew. Chem. Int. Ed. 47, 4993–4996 (2008).

    CAS  Article  Google Scholar 

  36. 36

    Hoffmann, M., Wilson, C. J., Odell, B. & Anderson, H. L. Template-directed synthesis of a π-conjugated porphyrin nanoring. Angew. Chem. Int. Ed. 46, 3122–3125 (2007).

    CAS  Article  Google Scholar 

  37. 37

    Mahabadi, H. K. & Rudin, A. Effect of solvent on concentration dependence of hydrodynamic volumes and GPC elution volumes. Polym. J. 11, 123–131 (1979).

    CAS  Article  Google Scholar 

  38. 38

    Grubisic, Z., Rempp, P. & Benoit, H. A universal calibration for gel permeation chromatography. J. Polym. Sci. Polym. Lett. 5, 753–759 (1967).

    Article  Google Scholar 

  39. 39

    Fukatsu, M. & Kurata, M. Hydrodynamic properties of flexible ring macromolecules. J. Chem. Phys. 44, 4539–4545 (1966).

    CAS  Article  Google Scholar 

  40. 40

    Dodgson, K. & Semlyen, J. A. Studies of cyclic and linear poly(dimethylsiloxanes): 1. Limiting viscosity number–molecular weight relationships. Polymer 18, 1265–1268 (1977).

    CAS  Article  Google Scholar 

  41. 41

    Kricheldorf, H. R. Cyclic polymers: synthetic strategies and physical properties. J. Polym. Sci. Polym. Chem. 48, 251–284 (2010).

    CAS  Article  Google Scholar 

  42. 42

    Brede, J. et al. Dynamics of molecular self-ordering in tetraphenyl porphyrin monolayer on metallic substrates. Nanotechnology 20, 275602 (2009).

    Article  Google Scholar 

Download references


The authors thank the Engineering and Physical Sciences Research Council (EPSRC), the European Research Council (ERC) and the Clarendon Fund for support, and the EPSRC mass spectrometry service (Swansea) for mass spectra.

Author information




H.L.A. and D.V.K. designed the synthesis of cyclic polymers. P.H.B., L.M.A.P., J.N.O.S. and A.M.S.E. developed the protocols required for STM imaging. Synthesis and solution-phase characterization were carried out by D.V.K. UHV and ambient STM experiments were carried out by L.M.A.P. and A.M.S.E., respectively. The manuscript was written by D.V.K., H.L.A. and P.H.B. All authors contributed to data analysis and edited the manuscript.

Corresponding authors

Correspondence to Peter H. Beton or Harry L. Anderson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 6069 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kondratuk, D., Perdigão, L., Esmail, A. et al. Supramolecular nesting of cyclic polymers. Nature Chem 7, 317–322 (2015).

Download citation

Further reading