Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Supramolecular nesting of cyclic polymers

Abstract

Advances in template-directed synthesis make it possible to create artificial molecules with protein-like dimensions, directly from simple components. These synthetic macromolecules have a proclivity for self-organization that is reminiscent of biopolymers. Here, we report the synthesis of monodisperse cyclic porphyrin polymers, with diameters of up to 21 nm (750 C–C bonds). The ratio of the intrinsic viscosities for cyclic and linear topologies is 0.72, indicating that these polymers behave as almost ideal flexible chains in solution. When deposited on gold surfaces, the cyclic polymers display a new mode of two-dimensional supramolecular organization, combining encapsulation and nesting; one nanoring adopts a near-circular conformation, thus allowing a second nanoring to be captured within its perimeter, in a tightly folded conformation. Scanning tunnelling microscopy reveals that nesting occurs in combination with stacking when nanorings are deposited under vacuum, whereas when they are deposited directly from solution under ambient conditions there is stacking or nesting, but not a combination of both.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Vernier-template-directed synthesis of nanorings c-P30 and c-P40 and molecular structures of the components.
Figure 2: Product distributions of coupling reactions.
Figure 3: GPC retention times of cyclic and linear porphyrin oligomers plotted against log molecular weight, showing that the rings are more compact than the linear chains.
Figure 4: STM images of nanorings deposited on gold surfaces under UHV.
Figure 5: STM images of c-P30 deposited on Au(111) from solution and imaged under ambient conditions.

Similar content being viewed by others

References

  1. Hunter, C. A. & Anderson, H. L. What is cooperativity? Angew. Chem. Int. Ed. 48, 7488–7499 (2009).

    Article  CAS  Google Scholar 

  2. Cheng, R. P. Beyond de novo protein design—de novo design of non-natural folded oligomers. Curr. Opin. Struct. Biol. 14, 512–520 (2004).

    Article  CAS  Google Scholar 

  3. Gan, Q. et al. Helix-rod host–guest complexes with shuttling rates much faster than disassembly. Science 331, 1172–1175 (2011).

    Article  CAS  Google Scholar 

  4. Sakai, N., Mareda, J. & Matile, S. Artificial β-barrels. Acc. Chem. Res. 41, 1354–1365 (2008).

    Article  CAS  Google Scholar 

  5. Kondratuk, D. V. et al. Two Vernier-templated routes to a 24-porphyrin nanoring. Angew. Chem. Int. Ed. 51, 6696–6699 (2012).

    Article  CAS  Google Scholar 

  6. Bartels, L. Tailoring molecular layers at metal surfaces. Nature Chem. 2, 87–95 (2010).

    Article  CAS  Google Scholar 

  7. Kudernac, T., Lei, S., Elemans, J. A. A. W. & De Feyter, S. Two-dimensional supramolecular self-assembly: nanoporous networks on surfaces. Chem. Soc. Rev. 38, 402–421 (2009).

    Article  CAS  Google Scholar 

  8. Barth, J. V., Costantini, G. & Kern, K. Engineering atomic and molecular nanostructures at surfaces. Nature 437, 671–679 (2005).

    Article  CAS  Google Scholar 

  9. Böhringer, M. et al. Two-dimensional self-assembly of supramolecular clusters and chains. Phys. Rev. Lett. 1, 324–327 (1999).

    Article  Google Scholar 

  10. Yokoyama, T., Yokoyama, S., Kamikado, T., Okuno, Y. & Mashiko, S. Selective assembly on a surface of supramolecular aggregates with controlled size and shape. Nature 413, 619–621 (2001).

    Article  CAS  Google Scholar 

  11. Barth, J. V. et al. Building supramolecular nanostructures at surfaces by hydrogen bonding. Angew. Chem. Int. Ed. 39, 1230–1234 (2000).

    Article  CAS  Google Scholar 

  12. Griessl, S., Lackinger, M., Edelwirth, M., Hietschold, M. & Heckl, W. M. Self-assembled two-dimensional molecular host–guest architectures from trimesic acid. Single Mol. 3, 25–31 (2002).

    Article  CAS  Google Scholar 

  13. Theobald, J. A., Oxtoby, N. S., Phillips, M. A., Champness, N. R. & Beton, P. H. Controlling molecular deposition and layer structure with supramolecular surface assemblies. Nature 424, 1029–1031 (2003).

    Article  CAS  Google Scholar 

  14. Stepanow, S. et al. Steering molecular organization and host–guest interactions using two-dimensional nanoporous coordination systems. Nature Mater. 3, 229–233 (2004).

    Article  CAS  Google Scholar 

  15. Griessl, S. J. H. et al. Incorporation and manipulation of coronene in an organic template structure. Langmuir 20, 9403–9407 (2004).

    Article  CAS  Google Scholar 

  16. Blunt, M. O. et al. Guest-induced growth of a surface-based supramolecular bilayer. Nature Chem. 3, 74–78 (2011).

    Article  CAS  Google Scholar 

  17. Spillmann, H. et al. Hierarchical assembly of two-dimensional homochiral nanocavity arrays. J. Am. Chem. Soc. 125, 10725–10728 (2003).

    Article  CAS  Google Scholar 

  18. Furukawa, S. et al. Structural transformation of a two-dimensional molecular network in response to selective guest inclusion. Angew. Chem. Int. Ed. 46, 2831–2834 (2007).

    Article  CAS  Google Scholar 

  19. Nath, K. G. et al. Rational modulation of the periodicity in linear hydrogen-bonded assemblies of trimesic acid on surfaces. J. Am. Chem. Soc. 128, 4212–4213 (2006).

    Article  CAS  Google Scholar 

  20. Klappenberger, F. et al. Conformational adaptation in supramolecular assembly on surfaces. ChemPhysChem 8, 1782–1786 (2007).

    Article  CAS  Google Scholar 

  21. Jung, T. A., Schlittler, R. R. & Gimzewski, J. K. Conformational identification of individual adsorbed molecules with the STM. Nature 386, 696–698 (1997).

    Article  CAS  Google Scholar 

  22. Taylor, P. N. et al. Conjugated porphyrin oligomers from monomer to hexamer. Chem. Commun. 909–910 (1998).

  23. Sprafke, J. K. et al. Belt-shaped π-systems: relating geometry to electronic structure in a six-porphyrin nanoring. J. Am. Chem. Soc. 133, 17262–17273 (2011).

    Article  CAS  Google Scholar 

  24. Saywell, A. et al. Conformation and packing of porphyrin polymer chains deposited using electrospray on a gold surface. Angew. Chem. Int. Ed. 49, 9136–9139 (2010).

    Article  CAS  Google Scholar 

  25. O'Sullivan, M. C. et al. Vernier templating and synthesis of a 12-porphyrin nanoring. Nature 469, 72–75 (2011).

    Article  CAS  Google Scholar 

  26. Svatek, S. A. et al. Mechanical stiffening of porphyrin nanorings through supramolecular columnar stacking. Nano Lett. 13, 3391–3395 (2013).

    Article  CAS  Google Scholar 

  27. Wieland, M. B. et al. Height dependent molecular trapping in stacked cyclic porphyrin nanorings. Chem. Commun. 50, 7332–7335 (2014).

    Article  CAS  Google Scholar 

  28. Bielawski, C. & Grubbs, R. H. Living ring-opening metathesis polymerization. Prog. Polym. Sci. 32, 1–29 (2007).

    Article  CAS  Google Scholar 

  29. Semlyen, J. A. Cyclic Polymers 2nd edn (Kluwer Academic, 2000).

    Google Scholar 

  30. Jia, Z. & Monteiro, M. J. Cyclic polymers: methods and strategies. J. Polym. Sci. Polym. Chem. 50, 2085–2097 (2012).

    Article  CAS  Google Scholar 

  31. Mayor, M. & Didschies, C. A giant conjugated molecular ring. Angew. Chem. Int. Ed. 42, 3176–3179 (2003).

    Article  CAS  Google Scholar 

  32. Aggarwal, A. V. et al. Fluctuating exciton localizations in giant π-conjugated spoked-wheel macrocycles. Nature Chem. 5, 964–970 (2013).

    Article  CAS  Google Scholar 

  33. Hori, T. et al. Synthesis of nanometer-scale porphyrin wheels of variable size. Chem. Eur. J. 14, 582–595 (2008).

    Article  CAS  Google Scholar 

  34. May, R., Jester, S. & Höger, S. A giant molecular spoked wheel. J. Am. Chem. Soc. 136, 16732–16735 (2014).

    Article  CAS  Google Scholar 

  35. Hoffmann, M. et al. Enhanced π-conjugation around a porphyrin[6]nanoring. Angew. Chem. Int. Ed. 47, 4993–4996 (2008).

    Article  CAS  Google Scholar 

  36. Hoffmann, M., Wilson, C. J., Odell, B. & Anderson, H. L. Template-directed synthesis of a π-conjugated porphyrin nanoring. Angew. Chem. Int. Ed. 46, 3122–3125 (2007).

    Article  CAS  Google Scholar 

  37. Mahabadi, H. K. & Rudin, A. Effect of solvent on concentration dependence of hydrodynamic volumes and GPC elution volumes. Polym. J. 11, 123–131 (1979).

    Article  CAS  Google Scholar 

  38. Grubisic, Z., Rempp, P. & Benoit, H. A universal calibration for gel permeation chromatography. J. Polym. Sci. Polym. Lett. 5, 753–759 (1967).

    Article  Google Scholar 

  39. Fukatsu, M. & Kurata, M. Hydrodynamic properties of flexible ring macromolecules. J. Chem. Phys. 44, 4539–4545 (1966).

    Article  CAS  Google Scholar 

  40. Dodgson, K. & Semlyen, J. A. Studies of cyclic and linear poly(dimethylsiloxanes): 1. Limiting viscosity number–molecular weight relationships. Polymer 18, 1265–1268 (1977).

    Article  CAS  Google Scholar 

  41. Kricheldorf, H. R. Cyclic polymers: synthetic strategies and physical properties. J. Polym. Sci. Polym. Chem. 48, 251–284 (2010).

    Article  CAS  Google Scholar 

  42. Brede, J. et al. Dynamics of molecular self-ordering in tetraphenyl porphyrin monolayer on metallic substrates. Nanotechnology 20, 275602 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Engineering and Physical Sciences Research Council (EPSRC), the European Research Council (ERC) and the Clarendon Fund for support, and the EPSRC mass spectrometry service (Swansea) for mass spectra.

Author information

Authors and Affiliations

Authors

Contributions

H.L.A. and D.V.K. designed the synthesis of cyclic polymers. P.H.B., L.M.A.P., J.N.O.S. and A.M.S.E. developed the protocols required for STM imaging. Synthesis and solution-phase characterization were carried out by D.V.K. UHV and ambient STM experiments were carried out by L.M.A.P. and A.M.S.E., respectively. The manuscript was written by D.V.K., H.L.A. and P.H.B. All authors contributed to data analysis and edited the manuscript.

Corresponding authors

Correspondence to Peter H. Beton or Harry L. Anderson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 6069 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondratuk, D., Perdigão, L., Esmail, A. et al. Supramolecular nesting of cyclic polymers. Nature Chem 7, 317–322 (2015). https://doi.org/10.1038/nchem.2182

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2182

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing