Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stereoelectronic switching in single-molecule junctions

Abstract

A new intersection between reaction chemistry and electronic circuitry is emerging from the ultraminiaturization of electronic devices. Over decades chemists have developed a nuanced understanding of stereoelectronics to establish how the electronic properties of molecules relate to their conformation; the recent advent of single-molecule break-junction techniques provides the means to alter this conformation with a level of control previously unimagined. Here we unite these ideas by demonstrating the first single-molecule switch that operates through a stereoelectronic effect. We demonstrate this behaviour in permethyloligosilanes with methylthiomethyl electrode linkers. The strong σ conjugation in the oligosilane backbone couples the stereoelectronic properties of the sulfur–methylene σ bonds that terminate the molecule. Theoretical calculations support the existence of three distinct dihedral conformations that differ drastically in their electronic character. We can shift between these three species by simply lengthening or compressing the molecular junction, and, in doing so, we can switch conductance digitally between two states.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures of oligosilanes Si1, Si4, Si7 and Si10 calculated at the B3LYP/6-31G** level.
Figure 2: Iterative synthesis of oligosilanes terminated with methylthiomethyl end groups.
Figure 3: Conductance analysis of the oligosilane series.
Figure 4: DFT calculations describe the mechanism for switching as the oligosilanes are elongated in the junction.

Similar content being viewed by others

References

  1. Reed, M. A. & Tour, J. M. Computing with molecules. Sci. Am. 282, 86–93 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Song, H., Reed, M. A. & Lee, T. Single molecule electronic devices. Adv. Mater. 23, 1583–1608 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Turro, N. J. Modern Molecular Photochemistry (University Science Books, 1991).

    Google Scholar 

  4. Butenhoff, T. J. & Moore, C. B. Hydrogen atom tunneling in the thermal tautomerism of porphine imbedded in a n-hexane matrix. J. Am. Chem. Soc. 110, 8336–8341 (1988).

    Article  CAS  Google Scholar 

  5. Phelan, N. F. & Orchin, M. Cross conjugation. J. Chem. Educ. 45, 633–637 (1968).

    Article  CAS  Google Scholar 

  6. Van der Molen, S. J. et al. Light-controlled conductance switching of ordered metal–molecule–metal devices. Nano Lett. 9, 76–80 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Auwärter, W. et al. A surface-anchored molecular four-level conductance switch based on single proton transfer. Nature Nanotechnol. 7, 41–46 (2012).

    Article  CAS  Google Scholar 

  8. Darwish, N. et al. Observation of electrochemically controlled quantum interference in a single anthraquinone-based norbornylogous bridge molecule. Angew. Chem. Int. Ed. 51, 3203–3206 (2012).

    Article  CAS  Google Scholar 

  9. Eliel, E. L. & Wilen, S. H. Stereochemistry of Organic Compounds (Wiley, 1994).

    Google Scholar 

  10. Choi, B-Y. et al. Conformational molecular switch of the azobenzene molecule: a scanning tunneling microscopy study. Phys. Rev. Lett. 96, 156106 (2006).

    Article  PubMed  CAS  Google Scholar 

  11. Donhauser, Z. J. et al. Conductance switching in single molecules through conformational changes. Science 292, 2303–2307 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Moore, A. M. et al. Molecular engineering and measurements to test hypothesized mechanisms in single molecule conductance switching. J. Am. Chem. Soc. 128, 1959–1967 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Blum, A. S. et al. Molecularly inherent voltage-controlled conductance switching. Nature Mater. 4, 167–172 (2005).

    Article  CAS  Google Scholar 

  14. Rahimi, M. & Troisi, A. Probing local electric field and conformational switching in single-molecule break junctions. Phys. Rev. B 79, 113413 (2009).

    Article  CAS  Google Scholar 

  15. Moresco, F. et al. Conformational changes of single molecules induced by scanning tunneling microscopy manipulation: a route to molecular switching. Phys. Rev. Lett. 86, 672–675 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Franco, I., Solomon, G. C., Schatz, G. C. & Ratner, M. A. Tunneling currents that increase with molecular elongation. J. Am. Chem. Soc. 133, 15714–15720 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Shibano, Y. et al. Conformation effect of oligosilane linker on photoinduced electron transfer of tetrasilane-linked zinc porphyrin–[60]fullerene dyads. J. Organomet. Chem. 692, 356–367 (2007).

    Article  CAS  Google Scholar 

  18. Ruehl, K. E. & Matyjaszewski, K. Dearylation of α,ω-diphenylpermethylated oligosilanes with triflic acid. J. Organomet. Chem. 410, 1–12 (1991).

    Article  CAS  Google Scholar 

  19. Kobayashi, T. & Pannell, K. H. A general, high-yield reaction for the formation of (chloromethyl)oligosilanes. Organometallics 9, 2201–2203 (1990).

    Article  CAS  Google Scholar 

  20. Kobayashi, T. & Pannell, K. H. Synthesis of (chloromethyl)silanes by the low-temperature reaction of chlorosilanes and in situ generated (chloromethyl)lithium in tetrahydrofuran. Organometallics 10, 1960–1964 (1991).

    Article  CAS  Google Scholar 

  21. Anklam, E. Synthese von α-Halogen-ω-alkylthio-alkanen und α,ω-Bisalkylthio-alkanen. Synthesis 1987, 841–843 (1987).

    Article  Google Scholar 

  22. Xu, B. & Tao, N. J. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301, 1221–1223 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Park, Y. S. et al. Contact chemistry and single-molecule conductance: a comparison of phosphines, methyl sulfides, and amines. J. Am. Chem. Soc. 129, 15768–15769 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Agraït, N., Rodrigo, J. & Vieira, S. Conductance steps and quantization in atomic-size contacts. Phys. Rev. B 47, 12345–12348 (1993).

    Article  Google Scholar 

  25. Gonzalez, M. T. et al. Electrical conductance of molecular junctions by a robust statistical analysis. Nano Lett. 6, 2238–2242 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Klausen, R. S., Widawsky, J. R., Steigerwald, M. L., Venkataraman, L. & Nuckolls, C. Conductive molecular silicon. J. Am. Chem. Soc. 134, 4541–4544 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Hybertsen, M. S. et al. Amine-linked single-molecule circuits: systematic trends across molecular families. J. Phys. Condens. Matter 20, 374115 (2008).

    Article  PubMed  CAS  Google Scholar 

  28. Sandorfy, C. LCAO MO calculations on saturated hydrocarbons and their substituted derivatives. Can. J. Chem. 33, 1337–1351 (1955).

    Article  CAS  Google Scholar 

  29. Schepers, T. & Michl, J. Optimized ladder C and ladder H models for sigma conjugation: chain segmentation in polysilanes. J. Phys. Org. Chem. 15, 490–498 (2002).

    Article  CAS  Google Scholar 

  30. Salomon, A. et al. Comparison of electronic transport measurements on organic molecules. Adv. Mater. 15, 1881–1890 (2003).

    Article  CAS  Google Scholar 

  31. Temirov, R., Lassise, A., Anders, F. B. & Tautz, F. S. Kondo effect by controlled cleavage of a single-molecule contact. Nanotechnology 19, 065401 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Bruot, C., Hihath, J. & Tao, N. Mechanically controlled molecular orbital alignment in single molecule junctions. Nature Nanotechnol. 7, 35–40 (2012).

    Article  CAS  Google Scholar 

  33. González, M. T. et al. Stability of single- and few-molecule junctions of conjugated diamines. J. Am. Chem. Soc. 135, 5420–5426 (2013).

    Article  PubMed  CAS  Google Scholar 

  34. Trouwborst, M., Huisman, E., Bakker, F., van der Molen, S. & van Wees, B. Single atom adhesion in optimized gold nanojunctions. Phys. Rev. Lett. 100, 175502 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Chang, S., He, J., Zhang, P., Gyarfas, B. & Lindsay, S. Gap distance and interactions in a molecular tunnel junction. J. Am. Chem. Soc. 133, 14267–14269 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lin, J. & Beratan, D. N. Tunneling while pulling: the dependence of tunneling current on end-to-end distance in a flexible molecule. J. Phys. Chem. A 108, 5655–5661 (2004).

    Article  CAS  Google Scholar 

  37. Lafferentz, L. et al. Conductance of a single conjugated polymer as a continuous function of its length. Science 323, 1193–1197 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Fan, F-R. F. et al. Charge transport through self-assembled monolayers of compounds of interest in molecular electronics. J. Am. Chem. Soc. 124, 5550–5560 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Piqueras, M. C., Crespo, R. & Michl, J. The transoid, ortho, and gauche conformers of decamethyl-n-tetrasilane, n-Si4Me10: electronic transitions in the multistate complete active space second-order perturbation theory description. J. Phys. Chem. A 107, 4661–4668 (2003).

    Article  CAS  Google Scholar 

  40. George, C. B., Ratner, M. A. & Lambert, J. B. Strong conductance variation in conformationally constrained oligosilane tunnel junctions. J. Phys. Chem. A 113, 3876–3880 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Michl, J. & West, R. Conformations of linear chains. Systematics and suggestions for nomenclature. Acc. Chem. Res. 33, 821–823 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Goddard, W. A. & Harding, L. B. The description of chemical bonding from ab initio calculations. Annu. Rev. Phys. Chem. 29, 363–396 (1978).

    Article  CAS  Google Scholar 

  43. Jaguar, version 8.3 (Schrodinger, Inc., New York, 2014).

  44. Parameswaran, R. et al. Reliable formation of single molecule junctions with air-stable diphenylphosphine linkers. J. Phys. Chem. Lett. 1, 2114–2119 (2010).

    Article  CAS  Google Scholar 

  45. McConnell, H. M. Intramolecular charge transfer in aromatic free radicals. J. Chem. Phys. 35, 508–515 (1961).

    Article  CAS  Google Scholar 

  46. Woitellier, S., Launay, J. P. & Joachim, C. The possibility of molecular switching: theoretical study of [(NH3)5Ru-4,4′-bipy-Ru(NH3)5]5+. Chem. Phys. 131, 481–488 (1989).

    Article  CAS  Google Scholar 

  47. Venkataraman, L. et al. Electronics and chemistry: varying single-molecule junction conductance using chemical substituents. Nano Lett. 7, 502–506 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Venkataraman, L., Klare, J. E., Nuckolls, C., Hybertsen, M. S. & Steigerwald, M. L. Dependence of single-molecule junction conductance on molecular conformation. Nature 442, 904–907 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Venkataraman, L. et al. Single-molecule circuits with well-defined molecular conductance. Nano Lett. 6, 458–462 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Park, Y. S. et al. Frustrated rotations in single-molecule junctions. J. Am. Chem. Soc. 131, 10820–10821 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the National Science Foundation (NSF) for the primary support of these studies under Grant No. CHE-1404922. T.A.S. is supported by the NSF Graduate Research Fellowship under Grant No. 11-44155. H.L. is supported by the Semiconductor Research Corporation and New York Center for Advanced Interconnect Science and Technology program. L.V. thanks the Packard Foundation for support. We thank R. S. Klausen, P. Mortimer and Y. Itagaki for mass spectrometry assistance and O. Adak, E. J. Dell and J. L. Leighton for insightful discussions.

Author information

Authors and Affiliations

Authors

Contributions

T.A.S. synthesized all the molecules. H.L. carried out all the STM-BJ measurements. T.A.S. and M.L.S. carried out all the computations. All the authors conceived the idea, designed the experiments, analysed the data and co-wrote the manuscript.

Corresponding authors

Correspondence to Michael L. Steigerwald, Latha Venkataraman or Colin Nuckolls.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 5824 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, T., Li, H., Steigerwald, M. et al. Stereoelectronic switching in single-molecule junctions. Nature Chem 7, 215–220 (2015). https://doi.org/10.1038/nchem.2180

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2180

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing