Review Article | Published:

Protecting-group-free synthesis as an opportunity for invention

Nature Chemistry volume 1, pages 193205 (2009) | Download Citation

Abstract

The constant pressure to prepare compounds in a more efficient manner has placed the process by which traditional synthetic chemistry is conducted under scrutiny. Areas that have the potential to be improved must be highlighted and modified, so that we can approach the criterion of the 'ideal synthesis'. One area that offers this prospect is the minimization of the use of protecting groups in synthesis. A protection/deprotection event introduces at least two steps into a sequence, incurring costs from additional reagents and waste disposal, and generally leads to a reduced overall yield. Here we present relevant historical context and highlight recent (post-2004) total syntheses that have developed new chemistry in an effort to exclude protecting groups. The invention of chemoselective methodologies is crucial to the execution of 'protecting-group-free' synthesis, and recent advances in this area are also highlighted.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Organic synthesis – where now? Angew. Chem. Int. Ed. Engl. 29, 1320–1367 (1990).

  2. 2.

    Introduction: frontiers in organic synthesis. Chem. Rev. 96, 1–2 (1996).

  3. 3.

    A catalytic lifetime. Chem. Sci. 4, C69 (2007).

  4. 4.

    & in Organic Synthesis: Theory and Applications Vol. 2 (ed. Hudlicky, T.) 27–66 (JAI, 1993).

  5. 5.

    , , & Function-oriented synthesis, step economy, and drug design. Acc. Chem. Res. 41, 40–49 (2008).

  6. 6.

    The atom economy – a search for synthetic efficiency. Science 254, 1471–1477 (1991).

  7. 7.

    & Green Chemistry: Theory and Practice (Oxford Univ. Press, 1998).

  8. 8.

    & Green chemistry for chemical synthesis. Proc. Natl Acad. Sci. USA 105, 13197–13202 (2008).

  9. 9.

    & Protective Groups in Organic Synthesis 3rd edn (Wiley, 1999).

  10. 10.

    Protecting Groups 3rd edn (Thieme, 2005).

  11. 11.

    & Protection of hydroxyl groups as tert-butyldimethylsilyl derivatives. J. Am. Chem. Soc. 94, 6190–6191 (1972).

  12. 12.

    , , & Studies with trialkylsilyltriflates: new syntheses and applications. Tetrahedron Lett. 22, 3455–3458 (1981).

  13. 13.

    Solid phase peptide synthesis. 1. The synthesis of a tetrapeptide. J. Am. Chem. Soc. 85, 2149–2154 (1963).

  14. 14.

    Ueber die Verbindunger der Zucker mit den Alkoholen und Ketonen. Ber. Deut. Chem. Ges. 28, 1145–1167 (1895).

  15. 15.

    & A simple and modular strategy for small molecule synthesis: iterative Suzuki-Miyaura coupling of B-protected haloboronic acid building blocks. J. Am. Chem. Soc. 129, 6716–6717 (2007).

  16. 16.

    Protecting-group-free synthesis. Synthesis 3531–3541 (2006).

  17. 17.

    Selectivity: a key to synthetic efficiency. Science 219, 245–250 (1983).

  18. 18.

    , & Chemoselectivity: the mother of invention in total synthesis. Acc. Chem. Res. 42, 530–541 (2009).

  19. 19.

    & Dead Ends and Detours, Direct Ways to Successful Total Synthesis (Wiley-VCH, 2004).

  20. 20.

    Biotransformations in Organic Chemistry 3rd edn (Springer, 1997).

  21. 21.

    Biomimetic chemistry and artificial enzymes: catalysis by design. Acc. Chem. Res. 28, 146–153 (1995).

  22. 22.

    & Biogenesis and biomimetic chemistry: can complex natural products be assembled spontaneously? Eur. J. Org. Chem. 27–42 (2008).

  23. 23.

    A synthesis of tropinone. J. Chem. Soc. Trans. 111, 762–768 (1917).

  24. 24.

    & The Logic of Chemical Synthesis (Wiley, 1995).

  25. 25.

    , & Cascade reactions in total synthesis. Angew. Chem. Int. Ed. 45, 7134–7186 (2006).

  26. 26.

    , & Concepts of nature in organic synthesis: cascade catalysis and multistep conversions in concert. Org. Process Res. Dev. 7, 622–640 (2003).

  27. 27.

    & The total synthesis of racemic patchouli and epi-patchouli alcohol. Chem. Commun. 1287–1288 (1968).

  28. 28.

    , & Total synthesis of (±)-fawcettimine. J. Org. Chem. 54, 1548–1562 (1989).

  29. 29.

    , & Total synthesis of the lycopodium alkaloids (±)-fawcettimine and (±)-8-deoxyserratinine. Chem. Pharm. Bull. (Tokyo) 28, 2394–2402 (1980).

  30. 30.

    & Total synthesis of (−)-alloaristoteline, (−)-serratoline, and (+)-aristotelone. J. Org. Chem. 58, 564–568 (1993).

  31. 31.

    et al. New alkaloids from Aristotelia chilensis (mol.) stuntz. J. Chem. Soc. Chem. Commun. 79–80 (1978).

  32. 32.

    , , & Tasmanin, ein neues Indolalkaloid aus Aristotelia peduncularis. Helv. Chim. Acta 64, 2555–2562 (1981).

  33. 33.

    & Studies on the stereochemistry of nucleophilic additions to tetrahydropyridinium salts. Expeditious stereospecific total syntheses of (+)-makomakine, (+)-aristoteline, and (±)-hobartine. J. Chem. Soc. Chem. Commun. 384–386 (1983).

  34. 34.

    , & A total synthesis of plumericin, allamcin, and allamandin. 2. A biomimetic strategy. J. Am. Chem. Soc. 108, 4974–4983 (1986).

  35. 35.

    & Direct coupling of indoles with carbonyl compounds: short, enantioselective, gram-scale synthetic entry into the hapalindole and fischerindole alkaloid families. J. Am. Chem. Soc. 126, 7450–7451 (2004).

  36. 36.

    , & Total synthesis of marine natural products without using protecting groups. Nature 446, 404–408 (2007).

  37. 37.

    & Enantioselective total syntheses of welwitindolinone A and fischerindoles I and G. J. Am. Chem. Soc. 127, 15394–15396 (2005).

  38. 38.

    et al. Reaction of xenon difluoride with indene in aqueous 1,2-dimethoxyethane and tetrahydrofuran. J. Chem. Soc. Perkin Trans. 2 401–403 (1991).

  39. 39.

    & Total synthesis of (±)-psychotrimine. J. Am. Chem. Soc. 130, 10886–10887 (2008).

  40. 40.

    , & First total synthesis of trimeric indole alkaloid, psychotrimine. Org. Lett. 10, 125–128 (2008).

  41. 41.

    & Total synthesis of (+)-cyanthiwigin U. J. Am. Chem. Soc. 127, 5334–5335 (2005).

  42. 42.

    , & Ring-closing metathesis and related processes in organic synthesis. Acc. Chem. Res. 28, 446–452 (1995).

  43. 43.

    , & Metathesis reactions in total synthesis. Angew. Chem. Int. Ed. 44, 4490–4527 (2005).

  44. 44.

    & The catalytic enantioselective, protecting group-free total synthesis of (+)-dichroanone. J. Am. Chem. Soc. 128, 7738–7739 (2006).

  45. 45.

    & The enantioselective Tsuji allylation. J. Am. Chem. Soc. 126, 15044–15045 (2004).

  46. 46.

    et al. A very efficient route toward the 4a-methyltetrahydrofluorene skeleton: short synthesis of (±)-dichroanone and (±)-taiwaniaquinone H. J. Org. Chem. 14, 3384–3388 (2009).

  47. 47.

    , & Catalytic enantioselective stereoablative reactions: an unexploited approach to enantioselective catalysis. Org. Biomol. Chem. 5, 3571–3576 (2007).

  48. 48.

    & The total synthesis of (−)-cyanthiwigin F by means of a double catalytic enantioselective alkylation. Nature 453, 1228–1231 (2008).

  49. 49.

    & Aubé, J. An expeditious total synthesis of (±)-stenine. J. Am. Chem. Soc. 127, 15712–15713 (2005).

  50. 50.

    , , , & Aubé, J. Syntheses of the stemona alkaloids (±)-stenine, (±)-neostenine, and (±)-13-epineostenine using a stereodivergent Diels–Alder/azido-Schmidt reaction. J. Am. Chem. Soc. 130, 6018–6024 (2008).

  51. 51.

    et al. A protecting group free synthesis of (±)-neostenine via the [5+2] photocycloaddition of maleimides. J. Org. Chem. 73, 6497–6505 (2008).

  52. 52.

    et al. Intramolecular photocycloaddition of N-alkenyl substituted maleimides: a potential tool for rapid construction of perhydroazaazulene alkaloids. Eur. J. Org. Chem. 1473–1482 (2001).

  53. 53.

    et al. Platensimycin is a selective FabF inhibitor with potent antibiotic properties. Nature 441, 358–361 (2006).

  54. 54.

    et al. Discovery of platencin, a dual FabF and FabH inhibitor with in vivo antibiotic properties. Proc. Natl Acad. Sci. USA 104, 7612–7616 (2007).

  55. 55.

    , , & Platensimycin: a promising antimicrobial targeting fatty acid synthesis. Curr. Med. Chem. 15, 705–710 (2008).

  56. 56.

    & Short formal synthesis of (−)-platencin. Angew. Chem. Int. Ed. 47, 6199–6200 (2008).

  57. 57.

    & Protecting-group-free formal synthesis of platensimycin. Angew. Chem. Int. Ed. 46, 8074–8075 (2007).

  58. 58.

    & Total synthesis of (±)-platencin. Angew. Chem. Int. Ed. 47, 4373–4376 (2008).

  59. 59.

    , & Total synthesis of platensimycin. Angew. Chem. Int. Ed. 45, 7086–7090 (2006).

  60. 60.

    , & Studies on intramolecular alkylation. V* intramolecular alkylation of the aromatic ring in tetrahydronaphthyl diazomethyl ketones. Aust. J. Chem. 27, 1269–1275 (1974).

  61. 61.

    , & Total synthesis of platencin. Angew. Chem. Int. Ed. 47, 1780–1783 (2008).

  62. 62.

    & Expedient synthesis of (±)-bipinnatin J. Org. Lett. 8, 345–347 (2006).

  63. 63.

    , & Exploring biosynthetic relationships among furanocembranoids: synthesis of (−)-bipinnatin J, (+)-intricarene, (+)-rubifolide, and (+)-isoepilophodione B. Org. Lett. 8, 5901–5904 (2006).

  64. 64.

    , & Biomimetic synthesis of the shimalactones. Org. Lett. 10, 149–152 (2008).

  65. 65.

    , & Biomimetic synthesis of elysiapyrones A and B. Org. Lett. 7, 2901–2903 (2005).

  66. 66.

    & Total synthesis of (−)-penifulvin A, an insecticide with a dioxafenestrane skeleton. J. Am. Chem. Soc. 131, 452–453 (2009).

  67. 67.

    et al. Arene-alkene cycloadditions and organic synthesis. Pure Appl. Chem. 62, 1597–1602 (1990).

  68. 68.

    & Enatiospecific total synthesis of lairdinol A. J. Org. Chem. 73, 1071–1076 (2008).

  69. 69.

    , & Concise total synthesis of (+)-crocacin C. J. Org. Chem. 73, 6386–6388 (2008).

  70. 70.

    et al. A nonclassical stereoselective semi-synthesis of drospirenone via cross-metathesis reaction. Synthesis 3801–3804 (2008).

  71. 71.

    & Catalytic enantioselective synthesis of adociacetylene B. Org. Lett. 8, 4461–4464 (2006).

  72. 72.

    , & Aryl-aryl bond formation by transition-metal-catalyzed direct arylation. Chem. Rev. 107, 174–238 (2007).

  73. 73.

    , & Pd-catalyzed direct arylation of tautomerizable heterocycles with aryl boronic acids via C–OH, bond activation using phosphonium salts. J. Am. Chem. Soc. 130, 11300–11302 (2008).

  74. 74.

    , , , & Enzyme-like chemoselective acylation of alcohols in the presence of amines catalyzed by a tetranuclear zinc cluster. J. Am. Chem. Soc. 130, 2944–2945 (2008).

  75. 75.

    , & N- versus O-arylation of aminoalcohols: orthogonal selectivity in copper-based catalysts. J. Am. Chem. Soc. 129, 3490–3491 (2007).

  76. 76.

    Directed ortho metalation. Tertiary amide and O-carbamate directors in synthetic strategies for polysubstituted aromatics. Chem. Rev. 90, 879–933 (1990).

  77. 77.

    , , & PdII-catalyzed monoselective ortho halogenation of C–H bonds assisted by counter cations: a complimentary method to directed ortho lithiation. Angew. Chem. Int. Ed. 47, 5215–5219 (2008).

  78. 78.

    , , & Evaluation of solvent effects on the dissociation of aliphatic carboxylic acids in aqueous N, N-dimethylformamide mixtures according to the scaled particle theory. J. Phys. Org. Chem. 4, 87–95 (1991).

  79. 79.

    & Readily available unprotected amino aldehydes. J. Am. Chem. Soc. 128, 14772–14773 (2006).

  80. 80.

    & Amphoteric amino aldehydes enable rapid assembly of unprotected amino alcohols. Angew. Chem. Int. Ed. 47, 4188–4191 (2008).

  81. 81.

    , & Total synthesis without protecting groups: pyrrolidines and cyclic carbamates. Org. Lett. 11, 535–538 (2009).

  82. 82.

    , & Practical method for the synthesis of D or L-α-amino acids by the alkylation of (+)- or (−)-pseudoephedrine glycinamide. J. Am. Chem. Soc. 117, 8488–8489 (1995).

  83. 83.

    in Chemistry and Biochemistry of the Amino Acids (ed. Barrett, G. C.) Ch. 3 (Chapman and Hall, 1985).

  84. 84.

    et al. Highly efficient synthesis of β-amino acid derivatives via asymmetric hydrogenation of unprotected enamines. J. Am. Chem. Soc. 126, 9918–9919 (2004).

  85. 85.

    et al. A practical synthesis of the platelet fibrinogen antagonist, elarofiban. Org. Process Res. Dev. 7, 866–872 (2003).

  86. 86.

    et al. Highly diastereoselective heterogeneously catalyzed hydrogenation of enamines for the synthesis of chiral β-amino acid derivatives. J. Am. Chem. Soc. 126, 3048–3049 (2004).

  87. 87.

    , & Enantioselective synthesis of β-amino acids based on BINAP-ruthenium(II) catalyzed hydrogenation. Tetrahedron Asymm. 2, 543–554 (1991).

  88. 88.

    , , & The pursuit of palau'amine. Angew. Chem. Int. Ed. 46, 6586–6594 (2007).

  89. 89.

    , , , & Total synthesis of (±)-axinellamines A and B. Angew. Chem. Int. Ed. 47, 3581–3583 (2008).

  90. 90.

    , , , & Oxidations involving silver. II. Oxidation of alcohols and aldehydes with silver(II) picolinate. Can. J. Chem. 47, 1649–1654 (1969).

  91. 91.

    , , & Total syntheses of (±)-massadine and massadine chloride. J. Am. Chem. Soc. 130, 16490–16491 (2008).

  92. 92.

    & Enantioselective imidazole-directed allylation of aldimines and ketimines. Org. Lett. 9, 3699–3701 (2007).

  93. 93.

    & Site-selective derivatization and remodeling of erythromycin A using simple peptide-based chiral catalysts. Angew. Chem. Int. Ed. 45, 5616–5619 (2006).

  94. 94.

    & Catalytic site-selective synthesis and evaluation of a series of erythromycin analogs. Bioorg. Med. Chem. Lett. 18, 6007–6011 (2008).

  95. 95.

    , , , & Toward a protecting-group-free halogen-metal exchange reaction: practical, chemoselective metalation of functionalized aromatic halides using dianion-type zincate, tBu4ZnLi2. J. Am. Chem. Soc. 128, 8404–8405 (2006).

  96. 96.

    , & Halogen-magnesium exchange on unprotected aromatic and heteroaromatic carboxylic acids. Chem. Commun. 2075–2077 (2007).

  97. 97.

    & Protecting group free glycosylation using p-toluenesulfonohydrazide donors. Org. Lett. 10, 3461–3463 (2008).

  98. 98.

    , , , & Arylation of Phe and Tyr side chains in unprotected peptides by Suzuki-Miyaura reaction in water. Org. Lett. 10, 3242–3245 (2008).

  99. 99.

    , , & Converting unprotected monosaccharides into functionalized lactols in aqueous media: metal-mediated allylation combined with tandem hydroformylation-cyclisation. Chem. Eur. J. 14, 10539–10542 (2008).

  100. 100.

    , , , & Allyl sulfides are privileged substrates in aqueous cross-metathesis: application to site-selective protein modification. J. Am. Chem. Soc. 130, 9642–9643 (2008).

  101. 101.

    , & First direct glycosylation of unprotected nonreducing mono- and disaccharides. Eur. J. Org. Chem. 5506–5513 (2007).

  102. 102.

    , , & Three-step synthesis of sialic acids and derivatives. Angew. Chem. Int. Ed. 45, 7417–7421 (2006).

  103. 103.

    & Synthesis of native proteins by chemical ligation. Annu. Rev. Biochem. 69, 923–960 (2000).

  104. 104.

    , & Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004–2021 (2001).

  105. 105.

    , & Redox-economy in organic synthesis. Angew. Chem. Int. Ed. 48, 2854–2867 (2009).

Download references

Author information

Affiliations

  1. Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA.

    • Ian S. Young
    •  & Phil S. Baran

Authors

  1. Search for Ian S. Young in:

  2. Search for Phil S. Baran in:

Corresponding author

Correspondence to Phil S. Baran.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/nchem.216

Further reading