Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Molecular length dictates the nature of charge carriers in single-molecule junctions of oxidized oligothiophenes

Abstract

To develop advanced materials for electronic devices, it is of utmost importance to design organic building blocks with tunable functionality and to study their properties at the molecular level. For organic electronic and photovoltaic applications, the ability to vary the nature of charge carriers and so create either electron donors or acceptors is critical. Here we demonstrate that charge carriers in single-molecule junctions can be tuned within a family of molecules that contain electron-deficient thiophene-1,1-dioxide (TDO) building blocks. Oligomers of TDO were designed to increase electron affinity and maintain delocalized frontier orbitals while significantly decreasing the transport gap. Through thermopower measurements we show that the dominant charge carriers change from holes to electrons as the number of TDO units is increased. This results in a unique system in which the charge carrier depends on the backbone length, and provides a new means to tune p- and n-type transport in organic materials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Characterization of the nature of the charge carriers using the STM-BJ technique.
Figure 2: Energy-level characterization of the TDOn family.
Figure 3: Single-molecule conductance data.
Figure 4: Single-molecule thermopower data.

References

  1. 1

    Heeger, A. J. Semiconducting and metallic polymers: the fourth generation of polymeric materials (Nobel lecture). Angew. Chem. Int. Ed. 40, 2591–2611 (2001).

    CAS  Article  Google Scholar 

  2. 2

    Henson, Z. B., Mullen, K. & Bazan, G. C. Design strategies for organic semiconductors beyond the molecular formula. Nature Chem. 4, 699–704 (2012).

    CAS  Google Scholar 

  3. 3

    Reddy, P., Jang, S. Y., Segalman, R. A. & Majumdar, A. Thermoelectricity in molecular junctions. Science 315, 1568–1571 (2007).

    CAS  Google Scholar 

  4. 4

    Bubnova, O. et al. Semi-metallic polymers. Nature Mater. 13, 190–194 (2014).

    CAS  Google Scholar 

  5. 5

    Schwartz, G. et al. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nature Commun. 4, 1859 (2013).

    Google Scholar 

  6. 6

    You, J. et al. A polymer tandem solar cell with 10.6% power conversion efficiency. Nature Commun. 4, 1446 (2013).

    Google Scholar 

  7. 7

    Gustafsson, G. et al. Flexible light-emitting diodes made from soluble conducting polymers. Nature 357, 477–479 (1992).

    CAS  Google Scholar 

  8. 8

    Meijer, E. J. et al. Solution-processed ambipolar organic field-effect transistors and inverters. Nature Mater. 2, 678–682 (2003).

    CAS  Google Scholar 

  9. 9

    Facchetti, A., Mushrush, M., Katz, H. E. & Marks, T. J. n-type building blocks for organic electronics: a homologous family of fluorocarbon-substituted thiophene oligomers with high carrier mobility. Adv. Mater. 15, 33–38 (2003).

    CAS  Google Scholar 

  10. 10

    Katz, H. E. et al. A soluble and air-stable organic semiconductor with high electron mobility. Nature 404, 478–481 (2000).

    CAS  PubMed  Google Scholar 

  11. 11

    Anthony, J. E., Facchetti, A., Heeney, M., Marder, S. R. & Zhan, X. W. n-type organic semiconductors in organic electronics. Adv. Mater. 22, 3876–3892 (2010).

    CAS  Google Scholar 

  12. 12

    Chen, W. et al. Aromaticity decreases single-molecule junction conductance. J. Am. Chem. Soc. 136, 918–920 (2014).

    CAS  PubMed  Google Scholar 

  13. 13

    Barbarella, G., Pudova, O., Arbizzani, C., Mastragostino, M. & Bongini, A. Oligothiophene-S,S-dioxides: a new class of thiophene-based materials. J. Org. Chem. 63, 1742–1745 (1998).

    CAS  Google Scholar 

  14. 14

    Camaioni, N., Ridolfi, G., Fattori, V., Favaretto, L. & Barbarella, G. Oligothiophene-S,S-dioxides as a class of electron-acceptor materials for organic photovoltaics. Appl. Phys. Lett. 84, 1901–1903 (2004).

    CAS  Google Scholar 

  15. 15

    Wei, S. et al. Bandgap engineering through controlled oxidation of polythiophenes. Angew. Chem. Int. Ed. 53, 1832–1836 (2014).

    CAS  Google Scholar 

  16. 16

    Potash, S. & Rozen, S. New conjugated oligothiophenes containing the unique arrangement of internal adjacent [all]-S,S-oxygenated thiophene fragments. Chem. Eur. J. 19, 5289–5296 (2013).

    CAS  PubMed  Google Scholar 

  17. 17

    Dell, E. J. & Campos, L. M. The preparation of thiophene-S,S-dioxides and their role in organic electronics. J. Mater. Chem. 22, 12945–12952 (2012).

    CAS  Google Scholar 

  18. 18

    Xu, B. Q. & Tao, N. J. J. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301, 1221–1223 (2003).

    CAS  Google Scholar 

  19. 19

    Venkataraman, L. et al. Single-molecule circuits with well-defined molecular conductance. Nano Lett. 6, 458–462 (2006).

    CAS  Google Scholar 

  20. 20

    Widawsky, J. R., Darancet, P., Neaton, J. B. & Venkataraman, L. Simultaneous determination of conductance and thermopower of single molecule junctions. Nano Lett. 12, 354–358 (2012).

    CAS  Google Scholar 

  21. 21

    Malen, J. A. et al. Identifying the length dependence of orbital alignment and contact coupling in molecular heterojunctions. Nano Lett. 9, 1164–1169 (2009).

    CAS  Google Scholar 

  22. 22

    Paulsson, M. & Datta, S. Thermoelectric effect in molecular electronics. Phys. Rev. B 67, 241403 (2003).

    Google Scholar 

  23. 23

    Yu, G., Gao, J., Hummelen, J. C., Wudl, F. & Heeger, A. J. Polymer photovoltaic cells—enhanced efficiencies via a network of internal donor–acceptor heterojunctions. Science 270, 1789–1791 (1995).

    CAS  Google Scholar 

  24. 24

    Park, Y. S. et al. Contact chemistry and single-molecule conductance: a comparison of phosphines, methyl sulfides, and amines. J. Am. Chem. Soc. 129, 15768–15769 (2007).

    CAS  Google Scholar 

  25. 25

    Amir, E. et al. Synthesis and characterization of soluble low-bandgap oligothiophene-[all]-S,S-dioxides-based conjugated oligomers and polymers. J. Polym. Chem. A 49, 1933–1941 (2011).

    CAS  Google Scholar 

  26. 26

    Sonar, P., Williams, E. L., Singh, S. P. & Dodabalapur, A. Thiophene–benzothiadiazole–thiophene (D-A-D) based polymers: effect of donor/acceptor moieties adjacent to D-A-D segment on photophysical and photovoltaic properties. J. Mater. Chem. 21, 10532–10541 (2011).

    CAS  Google Scholar 

  27. 27

    Bolivar-Marinez, L. E., dos Santos, M. C. & Galvao, D. S. Electronic structure of push–pull molecules based on thiophene oligomers. J. Phys. Chem. 100, 11029–11032 (1996).

    CAS  Google Scholar 

  28. 28

    Capozzi, B. et al. Length-dependent conductance of oligothiophenes. J. Am. Chem. Soc. 136, 10486–10492 (2014).

    CAS  Google Scholar 

  29. 29

    Yee, S. K., Malen, J. A., Majumdar, A. & Segalman, R. A. Thermoelectricity in fullerene-metal heterojunctions. Nano Lett. 11, 4089–4094 (2011).

    CAS  PubMed  Google Scholar 

  30. 30

    Sirringhaus, H. et al. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401, 685–688 (1999).

    CAS  Google Scholar 

  31. 31

    Bredas, J-L. Mind the gap! Mater. Horiz. 1, 17–19 (2014).

    CAS  Google Scholar 

  32. 32

    Gonzalez, M. T. et al. Electrical conductance of molecular junctions by a robust statistical analysis. Nano Lett. 6, 2238–2242 (2006).

    CAS  PubMed  Google Scholar 

  33. 33

    Dell, E. J. et al. Impact of molecular symmetry on single-molecule conductance. J. Am. Chem. Soc. 135, 11724–11727 (2013).

    CAS  PubMed  Google Scholar 

  34. 34

    Kamenetska, M. et al. Formation and evolution of single-molecule junctions. Phys. Rev. Lett. 102, 126803 (2009).

    CAS  PubMed  Google Scholar 

  35. 35

    Visoly-Fisher, I. et al. Conductance of a biomolecular wire. Proc. Natl Acad. Sci. USA 103, 8686–8690 (2006).

    CAS  PubMed  Google Scholar 

  36. 36

    Meisner, J. S. et al. A single-molecule potentiometer. Nano Lett. 11, 1575–1579 (2011).

    CAS  PubMed  Google Scholar 

  37. 37

    Widawsky, J. R. et al. Length-dependent thermopower of highly conducting Au–C bonded single molecule junctions. Nano Lett. 13, 2889–2894 (2013).

    CAS  PubMed  Google Scholar 

  38. 38

    Evangeli, C. et al. Engineering the thermopower of C60 molecular junctions. Nano Lett. 13, 2141–2145 (2013).

    CAS  PubMed  Google Scholar 

  39. 39

    Fatemi, V., Kamenetska, M., Neaton, J. B. & Venkataraman, L. Environmental control of single-molecule junction transport. Nano Lett. 11, 1988–1992 (2011).

    CAS  PubMed  Google Scholar 

  40. 40

    Rozen, S. HOF·CH3CN: probably the best oxygen transfer agent organic chemistry has to offer. Acc. Chem. Res. 47, 2378–2389 (2014).

    CAS  PubMed  Google Scholar 

  41. 41

    Stille, J. K. The palladium-catalyzed cross-coupling reactions of organotin reagents with organic electrophiles. Angew. Chem. Int. Ed. Engl. 25, 508–523 (1986).

    Google Scholar 

  42. 42

    Bredas, J. L., Silbey, R., Boudreaux, D. S. & Chance, R. R. Chain-length dependence of electronic and electrochemical properties of conjugated systems: polyacetylene, polyphenylene, polythiophene, and polypyrrole. J. Am. Chem. Soc. 105, 6555–6559 (1983).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported primarily by the National Science Foundation under award DMR-1206202. E.J.D. thanks the Howard Hughes Medical Institute, American Australian Association and Dow Chemical Company for International Research Fellowships.

Author information

Affiliations

Authors

Contributions

B.C., E.J.D., L.V. and L.M.C. conceived and designed the experiments. B.C. performed the conductance and thermopower measurements. E.J.D. and J.X. synthesized and characterized the molecules. All authors discussed the results. E.J.D. and B.C. contributed equally to this work. E.J.D., B.C., L.V. and L.M.C. wrote the paper with contributions from all authors.

Corresponding authors

Correspondence to Latha Venkataraman or Luis M. Campos.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1884 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dell, E., Capozzi, B., Xia, J. et al. Molecular length dictates the nature of charge carriers in single-molecule junctions of oxidized oligothiophenes. Nature Chem 7, 209–214 (2015). https://doi.org/10.1038/nchem.2160

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing