Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Porphyrins at interfaces

Abstract

Porphyrins and other tetrapyrrole macrocycles possess an impressive variety of functional properties that have been exploited in natural and artificial systems. Different metal centres incorporated within the tetradentate ligand are key for achieving and regulating vital processes, including reversible axial ligation of adducts, electron transfer, light-harvesting and catalytic transformations. Tailored substituents optimize their performance, dictating their arrangement in specific environments and mediating the assembly of molecular nanoarchitectures. Here we review the current understanding of these species at well-defined interfaces, disclosing exquisite insights into their structural and chemical properties, and also discussing methods by which to manipulate their intramolecular and organizational features. The distinct characteristics arising from the interfacial confinement offer intriguing prospects for molecular science and advanced materials. We assess the role of surface interactions with respect to electronic and physicochemical characteristics, and describe in situ metallation pathways, molecular magnetism, rotation and switching. The engineering of nanostructures, organized layers, interfacial hybrid and bio-inspired systems is also addressed.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Key characteristics of porphyrins and their control at surfaces.
Figure 2: Conformational adaptation, electronic and magnetic features of surface-confined tetrapyrroles.
Figure 3: Molecular rotation and switching, spin and electronic manipulation, ligation of adducts and metallation.
Figure 4: Supramolecular design with meso-substituted tetrapyrrole tectons at well-defined metal surfaces.
Figure 5: Formation of covalent nanostructures.
Figure 6: Organization of tetrapyrrole tectons at sp2-bonded sheet layers.
Figure 7: Porphyrinic hybrid architectures.
Figure 8: Bio-inspired interfacial tetrapyrrole nanosystems.

Similar content being viewed by others

References

  1. Küster, W. Beiträge zur Kenntnis des Bilirubins und Hämins. Hoppe-Seyler´s Z. Physiol. Chem. 82, 463–483 (1912).

    Article  Google Scholar 

  2. Battersby, A. R. Tetrapyrroles: The pigments of life. Nat. Prod. Rep. 17, 507–526 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Ghosh, A. First-principles quantum chemical studies of porphyrins. Acc. Chem. Res. 31, 189–198 (1998).

    Article  CAS  Google Scholar 

  4. Hodgson, G. W. & Baker, B. L. Porphyrin abiogenesis from pyrrole and formaldehyde under simulated geochemical conditions. Nature 216, 29–32 (1967).

    Article  CAS  PubMed  Google Scholar 

  5. Lindsey, J. S. & Bocian, D. F. Molecules for charge-based information storage. Acc. Chem. Res. 44, 638–650 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Bechet, D. et al. Nanoparticles as vehicles for delivery of photodynamic therapy agents. Trends Biotechnol. 26, 612–621 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Yella, A. et al. Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 334, 629–634 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Jung, T., Schlittler, R. & Gimzewski, J. Conformational identification of individual adsorbed molecules with the STM. Nature 386, 696–698 (1997).

    Article  CAS  Google Scholar 

  9. Yokoyama, T., Yokoyama, S., Kamidado, T. & Mashiko, S. Nonplanar adsorption and orientational ordering of porphyrin molecules on Au(111). J. Chem. Phys. 115, 3814 (2001).

    Article  CAS  Google Scholar 

  10. Kuck, S. et al. “Naked” iron-5, 10, 15-triphenylcorrole on Cu(111): Observation of chirality on a surface and manipulation of multiple conformational states by STM. J. Am. Chem. Soc. 130, 14072–14073 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Rosa, A., Ricciardi, G. & Baerends, E. J. Synergism of porphyrin-core saddling and twisting of meso-aryl substituents. J. Phys. Chem. A 110, 5180–5190 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Moresco, F. et al. Conformational changes of single molecules induced by scanning tunneling microscopy manipulation: A route to molecular switching. Phys. Rev. Lett. 86, 672–675 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Auwärter, W. et al. Self-assembly and conformation of tetrapyridyl-porphyrin molecules on Ag(111). J. Chem. Phys. 124, 194708–194706 (2006).

    Article  PubMed  CAS  Google Scholar 

  14. Auwärter, W. et al. Conformational adaptation and selective adatom capturing of tetrapyridyl-porphyrin molecules on a copper (111) surface. J. Am. Chem. Soc. 129, 11279–11285 (2007).

    Article  PubMed  CAS  Google Scholar 

  15. Wölfle, T., Görling, A. & Hieringer, W. Conformational flexibility of metalloporphyrins studied by density-functional calculations. Phys. Chem. Chem. Phys. 10, 5739–5742 (2008).

    Article  PubMed  CAS  Google Scholar 

  16. Loppacher, C. et al. Direct determination of the energy required to operate a single molecule switch. Phys. Rev. Lett. 90, 066107 (2003).

    Article  PubMed  CAS  Google Scholar 

  17. Iancu, V., Deshpande, A. & Hla, S-W. Manipulating Kondo temperature via single molecule switching. Nano Lett. 6, 820–823 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Auwärter, W. et al. Controlled metalation of self-assembled porphyrin nanoarrays in two dimensions. ChemPhysChem 8, 250–254 (2007).

    Article  PubMed  CAS  Google Scholar 

  19. de Jong, M. P. et al. Orbital-specific dynamic charge transfer from Fe(II)-tetraphenylporphyrin molecules to molybdenum disulfide substrates. Phys. Rev. B 72, 035448 (2005).

    Article  CAS  Google Scholar 

  20. Weber-Bargioni, A. et al. Visualizing the frontier orbitals of a conformationally adapted metalloporphyrin. ChemPhysChem 9, 89–94 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Klappenberger, F. et al. Temperature dependence of conformation, chemical state, and metal-directed assembly of tetrapyridyl-porphyrin on Cu(111). J. Chem. Phys. 129, 214702 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Auwärter, W. et al. Site-specific electronic and geometric interface structure of Co-tetraphenyl-porphyrin layers on Ag(111). Phys. Rev. B 81, 245403 (2010).

    Article  CAS  Google Scholar 

  23. Diller, K. et al. Self-metalation of 2H-tetraphenylporphyrin on Cu(111): An X-ray spectroscopy study. J. Chem. Phys. 136, 014705–014713 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Bischoff, F. et al. How surface bonding and repulsive interactions cause phase transformations: Ordering of a prototype macrocyclic compound on Ag(111). ACS Nano 7, 3139–3149 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Papageorgiou, A. C. et al. Self-terminating protocol for an interfacial complexation reaction in vacuo by metal–organic chemical vapor deposition. ACS Nano 7, 4520–4526 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Donovan, P., Robin, A., Dyer, M., Persson, M. & Raval, R. Unexpected deformations induced by surface interaction and chiral self-assembly of CoII-tetraphenylporphyrin (Co-TPP) adsorbed on Cu(110): A combined STM and periodic DFT study. Chem. Eur. J. 16, 11498 (2010).

    Article  Google Scholar 

  27. Seufert, K. et al. Cis-dicarbonyl binding at cobalt and iron porphyrins with saddle-shape conformation. Nature Chem. 3, 114–119 (2011).

    Article  CAS  Google Scholar 

  28. Di Santo, G. et al. Conformational adaptation and electronic structure of 2H-tetraphenylporphyrin on Ag(111) during Fe metalation. J. Phys. Chem. C 115, 4155–4162 (2011).

    Article  CAS  Google Scholar 

  29. Heim, D. et al. Self-assembly of flexible one-dimensional coordination polymers on metal surfaces. J. Am. Chem. Soc. 132, 6783–6790 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Heim, D. et al. Surface-assisted assembly of discrete porphyrin-based cyclic supramolecules. Nano Lett. 10, 122–128 (2009).

    Article  CAS  Google Scholar 

  31. Écija, D. et al. Hierarchic self-assembly of nanoporous chiral networks with conformationally flexible porphyrins. ACS Nano 4, 4936–4942 (2010).

    Article  PubMed  CAS  Google Scholar 

  32. Lukasczyk, T. et al. Interaction of cobalt(II) tetraaryporphyrins with a Ag(111) surface studied with photoelectron spectroscopy. J. Phys. Chem. C 111, 3090–3098 (2007).

    Article  CAS  Google Scholar 

  33. Diller, K. et al. Investigating the molecule-substrate interaction of prototypic tetrapyrrole compounds: Adsorption and self-metalation of porphine on Cu(111). J. Chem. Phys. 138, 154710–154719 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Scudiero, L., Barlow, D. E., Mazur, U. & Hipps, K. W. Scanning tunneling microscopy, orbital-mediated tunneling spectroscopy, and ultraviolet photoelectron spectroscopy of metal(II) tetraphenylporphyrins deposited from vapor. J. Am. Chem. Soc. 123, 4073–4080 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Scudiero, L., Barlow, D. E. & Hipps, K. W. Physical properties and metal ion specific scanning tunneling microscopy images of metal (II) tetraphenylporphyrins deposited from vapor onto gold (111). J. Phys. Chem. B 104, 11899–11905 (2000).

    Article  CAS  Google Scholar 

  36. Buchner, F. et al. Chemical fingerprints of large organic molecules in scanning tunneling microscopy: Imaging adsorbate-substrate coupling of metalloporphyrins. J. Phys. Chem. C 113, 16450–16457 (2009).

    Article  CAS  Google Scholar 

  37. Haq, S. et al. Clean coupling of unfunctionalized porphyrins at surfaces to give highly oriented organometallic oligomers. J. Am. Chem. Soc. 133, 12031–12039 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Komeda, T. et al. Observation and electric current control of a local spin in a single-molecule magnet. Nature Commun. 2, 217 (2011).

    Article  CAS  Google Scholar 

  39. Robles, R. et al. Spin doping of individual molecules by using single-atom manipulation. Nano Lett. 12, 3609–3612 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Scheybal, A. et al. Induced magnetic ordering in a molecular monolayer. Chem. Phys. Lett. 4, 214–220 (2005).

    Article  CAS  Google Scholar 

  41. Bhandary, S. et al. Manipulation of spin state of iron porphyrin by chemisorption on magnetic substrates. Phys. Rev. B 88, 024401 (2013).

    Article  CAS  Google Scholar 

  42. Wende, H. et al. Substrate-induced magnetic ordering and switching of iron porphyrin molecules. Nature Mater. 6, 516–520 (2007).

    Article  CAS  Google Scholar 

  43. Bernien, M. et al. Tailoring the nature of magnetic coupling of Fe-porphyrin molecules to ferromagnetic substrates. Phys. Rev. Lett. 102, 047202 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Stepanow, S. et al. Mixed-valence behavior and strong correlation effects of metal phthalocyanines adsorbed on metals. Phys. Rev. B 83, 220401 (2011).

    Article  CAS  Google Scholar 

  45. Heinrich, B. W., Braun, L., Pascual, J. I. & Franke, K. J. Protection of excited spin states by a superconducting energy gap. Nature Phys. 9, 765–768 (2013).

    Article  CAS  Google Scholar 

  46. Bhandary, S. et al. Graphene as a reversible spin manipulator of molecular magnets. Phys. Rev. Lett. 107, 257202 (2011).

    Article  PubMed  CAS  Google Scholar 

  47. Lippel, P. H., Wilson, R. J., Miller, M. D., Wöll, C. & Chiang, S. High-resolution imaging of copper-phthalocyanine by scanning-tunneling microscopy. Phys. Rev. Lett. 62, 171–174 (1989).

    Article  CAS  PubMed  Google Scholar 

  48. Liljeroth, P., Repp, J. & Meyer, G. Current-induced hydrogen tautomerization and conductance switching of naphthalocyanine molecules. Science 317, 1203–1206 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Mohn, F., Gross, L., Moll, N. & Meyer, G. Imaging the charge distribution within a single molecule. Nature Nanotech. 7, 227–231 (2012).

    Article  CAS  Google Scholar 

  50. Zhang, R. et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 498, 82–86 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Qiu, X. H., Nazin, G. V. & Ho, W. Vibrationally resolved fluorescence excited with submolecular precision. Science 299, 542–546 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Chen, C., Chu, P., Bobisch, C. A., Mills, D. L. & Ho, W. Viewing the interior of a single molecule: Vibronically resolved photon imaging at submolecular resolution. Phys. Rev. Lett. 105, 217402 (2010).

    Article  PubMed  CAS  Google Scholar 

  53. Eichberger, M. et al. Dimerization boosts one-dimensional mobility of conformationally adapted porphyrins on a hexagonal surface atomic lattice. Nano Lett. 8, 4608–4613 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Buchner, F. et al. Diffusion, rotation, and surface chemical bond of individual 2H-tetraphenylporphyrin molecules on Cu(111). J. Phys. Chem. C 115, 24172–24177 (2011).

    Article  CAS  Google Scholar 

  55. Wintjes, N. et al. A supramolecular multiposition rotary device. Angew. Chem. Int. Ed. 46, 4089–4092 (2007).

    Article  CAS  Google Scholar 

  56. Écija, D. et al. Assembly and manipulation of rotatable cerium porphyrinato sandwich complexes on a surface. Angew. Chem. Int. Ed. 50, 3872–3877 (2011).

    Article  CAS  Google Scholar 

  57. Tanaka, H. et al. Molecular rotation in self-assembled multidecker porphyrin complexes. ACS Nano 5, 9575–9582 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Vaughan, O. P. H., Williams, F. J., Bampos, N. & Lambert, R. M. A chemically switchable molecular pinwheel. Angew. Chem. Int. Ed. 45, 3779–3781 (2006).

    Article  CAS  Google Scholar 

  59. Qiu, X. H., Nazin, G. V. & Ho, W. Mechanisms of reversible conformational transitions in a single molecule. Phys. Rev. Lett. 93, 196806 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Auwärter, W. et al. A surface-anchored molecular four-level conductance switch based on single proton transfer. Nature Nanotech. 7, 41–46 (2012).

    Article  CAS  Google Scholar 

  61. Kumagai, T. et al. Thermally and vibrationally induced tautomerization of single porphycene molecules on a Cu(110) surface. Phys. Rev. Lett. 111, 246101 (2013).

    Article  PubMed  CAS  Google Scholar 

  62. Kumagai, T. et al. Controlling intramolecular hydrogen transfer in a porphycene molecule with single atoms or molecules located nearby. Nature Chem. 6, 41–46 (2014).

    Article  CAS  Google Scholar 

  63. Matino, F. et al. Single azopyridine-substituted porphyrin molecules for configurational and electronic switching. Chem. Commun. 46, 6780–6782 (2010).

    Article  CAS  Google Scholar 

  64. Barth, J. V. Fresh perspectives for surface coordination chemistry. Surf. Sci. 603, 1533–1541 (2009).

    Article  CAS  Google Scholar 

  65. Wäckerlin, C. et al. Controlling spins in adsorbed molecules by a chemical switch. Nature Commun. 1, 61 (2010).

    Article  CAS  Google Scholar 

  66. Wäckerlin, C. et al. Ammonia coordination introducing a magnetic moment in an on-surface low-spin porphyrin. Angew. Chem. Int. Ed. 52, 4568–4571 (2013).

    Article  CAS  Google Scholar 

  67. Uhlmann, C., Swart, I. & Repp, J. Controlling the orbital sequence in individual Cu-phthalocyanine molecules. Nano Lett. 13, 777–780 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. Krull, C., Robles, R., Mugarza, A. & Gambardella, P. Site- and orbital-dependent charge donation and spin manipulation in electron-doped metal phthalocyanines. Nature Mater. 12, 337–343 (2013).

    Article  CAS  Google Scholar 

  69. Flechtner, K., Kretschmann, A., Steinrück, H-P. & Gottfried, J. M. NO-induced reversible switching of the electronic interaction between a porphyrin-coordinated cobalt ion and a silver surface. J. Am. Chem. Soc. 129, 12110–12111 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Hieringer, W. et al. The surface trans effect: Influence of axial ligands on the surface chemical bonds of adsorbed metalloporphyrins. J. Am. Chem. Soc. 133, 6206–6222 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Seufert, K., Auwärter, W. & Barth, J. V. Discriminative response of surface-confined metalloporphyrin molecules to carbon and nitrogen monoxide. J. Am. Chem. Soc. 132, 18141–18146 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Friesen, B. A., Bhattarai, A., Mazur, U. & Hipps, K. W. Single molecule imaging of oxygenation of cobalt octaethylporphyrin at the solution/solid interface: thermodynamics from microscopy. J. Am. Chem. Soc. 134, 14897–14904 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. den Boer, D. et al. Detection of different oxidation states of individual manganese porphyrins during their reaction with oxygen at a solid/liquid interface. Nature Chem. 5, 621–627 (2013).

    Article  CAS  Google Scholar 

  74. Burema, S. R., Seufert, K., Auwärter, W., Barth, J. V. & Bocquet, M-L. Probing nitrosyl ligation of surface-confined metalloporphyrins by inelastic electron tunneling spectroscopy. ACS Nano 7, 5273–5281 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Qiu, X., Nazin, G. V., Hotzel, A. & Ho, W. Manipulation and characterization of xenon−metalloporphyrin complexation with a scanning tunneling microscope. J. Am. Chem. Soc. 124, 14804–14809 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Turner, M. et al. Deprotection, tethering, and activation of a one-legged metalloporphyrin on a chemically active metal surface: NEXAFS, synchrotron XPS, and STM study of [SAc]P-Mn(III)Cl on Ag(100). J. Am. Chem. Soc. 131, 14913–14919 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Berner, S. et al. Activity boost of a biomimetic oxidation catalyst by immobilization onto a gold surface. J. Catal. 244, 86–91 (2006).

    Article  CAS  Google Scholar 

  78. Hulsken, B. et al. Real-time single-molecule imaging of oxidation catalysis at a liquid-solid interface. Nature Nanotech. 2, 285–289 (2007).

    Article  CAS  Google Scholar 

  79. Xue, T. et al. Graphene-supported hemin as a highly active biomimetic oxidation catalyst. Angew. Chem. Int. Ed. 51, 3822–3825 (2012).

    Article  CAS  Google Scholar 

  80. Sedona, F. et al. Tuning the catalytic activity of Ag(110)-supported Fe phthalocyanine in the oxygen reduction reaction. Nature Mater. 11, 970–977 (2012).

    Article  CAS  Google Scholar 

  81. Shubina, T. E. et al. Principle and mechanism of direct porphyrin metalation: A joint experimental and theoretical investigation. J. Am. Chem. Soc. 129, 9476–9483 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Röckert, M. et al. Insights in the reaction mechanistics: Isotopic exchange during the metalation of deuterated tetraphenyl-21, 23D-porphyrin on Cu(111). J. Phys. Chem. C 118, 26729–26736 (2014).

    Article  CAS  Google Scholar 

  83. Doyle, C. M. et al. Evidence for the formation of an intermediate complex in the direct metalation of tetra(4-bromophenyl)-porphyrin on the Cu(111) surface. Chem. Commun. 47, 12134–12136 (2011).

    Article  CAS  Google Scholar 

  84. Goldoni, A. et al. Room temperature metalation of 2H-TPP monolayer on iron and nickel surfaces by picking up substrate metal atoms. ACS Nano 6, 10800–10807 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Ditze, S. et al. Activation energy for the self-metalation reaction of 2H-tetraphenylporphyrin on Cu(111). Angew. Chem. Int. Ed. 51, 10898–10901 (2012).

    Article  CAS  Google Scholar 

  86. González-Moreno, R. et al. Following the metalation process of protoporphyrin IX with metal substrate atoms at room temperature. J. Phys. Chem. C 115, 6849–6854 (2011).

    Article  CAS  Google Scholar 

  87. Rienzo, A. et al. X-ray absorption and photoemission spectroscopy of zinc protoporphyrin adsorbed on rutile TiO2(110) prepared by in situ electrospray deposition. J. Chem. Phys. 132, 084703–084706 (2010).

    Article  PubMed  CAS  Google Scholar 

  88. Barth, J. V. Molecular architectonic on metal surfaces. Annu. Rev. Phys. Chem. 58, 375–407 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Grill, L. et al. Nano-architectures by covalent assembly of molecular building blocks. Nature Nanotech. 2, 687–691 (2007).

    Article  CAS  Google Scholar 

  90. Rojas, G. et al. Self-assembly and properties of nonmetalated tetraphenyl-porphyrin on metal substrates. J. Phys. Chem. C 114, 9408–9415 (2010).

    Article  CAS  Google Scholar 

  91. Yokoyama, T., Yokoyama, S., Kamikado, T., Okuno, Y. & Mashiko, S. Selective assembly on a surface of supramolecular aggregates with controlled size and shape. Nature 413, 619–621 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Wintjes, N. et al. Supramolecular synthons on surfaces: Controlling dimensionality and periodicity of tetraarylporphyrin assemblies by the interplay of cyano and alkoxy substituents. Chem. Eur. J. 14, 5794–5802 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Yokoyama, T., Kamikado, T., Yokoyama, S. & Mashiko, S. Conformation selective assembly of carboxyphenyl substituted porphyrins on Au (111). J. Chem. Phys. 121, 11993–11997 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Spillmann, H. et al. A two-dimensional porphyrin-based porous network featuring communicating cavities for the templated complexation of fullerenes. Adv. Mater. 18, 275–279 (2006).

    Article  CAS  Google Scholar 

  95. Shi, Z. & Lin, N. Porphyrin-based two-dimensional coordination kagome lattice self-assembled on a Au(111) surface. J. Am. Chem. Soc. 131, 5376–5377 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Shi, Z. & Lin, N. Structural and chemical control in assembly of multicomponent metal-organic coordination networks on a surface. J. Am. Chem. Soc. 132, 10756–10761 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Li, Y. et al. Coordination and metalation bifunctionality of Cu with 5, 10, 15, 20-tetra(4-pyridyl)porphyrin: Toward a mixed-valence two-dimensional coordination network. J. Am. Chem. Soc. 134, 6401–6408 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Fendt, L. et al. Modification of supramolecular binding motifs induced by substrate registry: Formation of self-assembled macrocycles and chain-like patterns. Chem. Eur. J. 15, 11139–11150 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Hanke, F., Haq, S., Raval, R. & Persson, M. Heat-to-connect: Surface commensurability directs organometallic one-dimensional self-assembly. ACS Nano 5, 9093–9103 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Adisoejoso, J., Li, Y., Liu, J., Liu, P. N. & Lin, N. Two-dimensional metallo-supramolecular polymerization: Toward size-controlled multi-strand polymers. J. Am. Chem. Soc. 134, 18526–18529 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. Kezilebieke, S., Amokrane, A., Abel, M. & Bucher, J. P. Hierarchy of chemical bonding in the synthesis of Fe-phthalocyanine on metal surfaces: a local spectroscopy approach. J. Phys. Chem. Lett. 5, 3175–3182 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Nardi, E. et al. On-surface reaction between tetracarbonitrile-functionalized molecules and copper atoms. J. Phys. Chem. C 118, 27549–27553 (2014).

    Article  CAS  Google Scholar 

  103. Zhou, J. & Sun, Q. Magnetism of phthalocyanine-based organometallic single porous sheet. J. Am. Chem. Soc. 133, 15113–15119 (2011).

    Article  CAS  PubMed  Google Scholar 

  104. Giovanelli, L. et al. Magnetic coupling and single-ion anisotropy in surface-supported Mn-based metal−organic networks. J. Phys. Chem. C 118, 11738–11744 (2014).

    Article  CAS  Google Scholar 

  105. Wiengarten, A. et al. Surface-assisted dehydrogenative homocoupling of porphine molecules. J. Am. Chem. Soc. 136, 9346–9354 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. Lafferentz, L. et al. Controlling on-surface polymerization by hierarchical and substrate-directed growth. Nature Chem. 4, 215–220 (2012).

    Article  CAS  Google Scholar 

  107. In't Veld, M., Iavicoli, P., Haq, S., Amabilino, D. B. & Raval, R. Unique intermolecular reaction of simple porphyrins at a metal surface gives covalent nanostructures. Chem. Commun., 1536–1538 (2008).

  108. Haq, S. et al. Versatile bottom-up construction of diverse macromolecules on a surface observed by scanning tunneling microscopy. ACS Nano 9, 8856–8870 (2014).

    Article  CAS  Google Scholar 

  109. Shoji, O., Tanaka, H., Kawai, T. & Kobuke, Y. Single molecule visualization of coordination-assembled porphyrin macrocycles reinforced with covalent linkings. J. Am. Chem. Soc. 127, 8598–8599 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. O'Sullivan, M. C. et al. Vernier templating and synthesis of a 12-porphyrin nano-ring. Nature 469, 72–75 (2011).

    Article  CAS  PubMed  Google Scholar 

  111. Mao, J. et al. Tunability of supramolecular kagome lattices of magnetic phthalocyanines using graphene-based moiré patterns as templates. J. Am. Chem. Soc. 131, 14136–14137 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Joshi, S. et al. Control of molecular organization and energy level alignment by an electronically nanopatterned boron nitride template. ACS Nano 8, 430–442 (2014).

    Article  CAS  PubMed  Google Scholar 

  113. Järvinen, P. et al. Molecular self-assembly on graphene on SiO2 and h-BN substrates. Nano Lett. 13, 3199–3204 (2013).

    Article  PubMed  CAS  Google Scholar 

  114. Bazarnik, M., Brede, J., Decker, R. & Wiesendanger, R. Tailoring molecular self-assembly of magnetic phthalocyanine molecules on Fe- and Co-intercalated graphene. ACS Nano 7, 11341–11349 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Seufert, K. et al. Controlled interaction of surface quantum-well electronic states. Nano Lett. 13, 6130–6135 (2013).

    Article  CAS  PubMed  Google Scholar 

  116. Qiu, X. et al. Alkane-assisted adsorption and assembly of phthalocyanines and porphyrins. J. Am. Chem. Soc. 122, 5550–5556 (2000).

    Article  CAS  Google Scholar 

  117. Lei, S. B. et al. Surface stabilized porphyrin and phthalocyanine two-dimensional network connected by hydrogen bonds. J. Phys. Chem. B 105, 10838–10841 (2001).

    Article  CAS  Google Scholar 

  118. Friesen, B. A., Wiggins, B., McHale, J. L., Mazur, U. & Hipps, K. W. Differing HOMO and LUMO mediated conduction in a porphyrin nanorod. J. Am. Chem. Soc. 132, 8554–8556 (2010).

    Article  CAS  PubMed  Google Scholar 

  119. Drain, C. M. et al. Designing supramolecular porphyrin arrays that self-organize into nanoscale optical and magnetic materials. Proc. Natl Acad. Sci. USA 99, 6498–6502 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Otsuki, J., Komatsu, Y., Kobayashi, D., Asakawa, M. & Miyake, K. Rotational libration of a double-decker porphyrin visualized. J. Am. Chem. Soc. 132, 6870–6871 (2010).

    Article  CAS  PubMed  Google Scholar 

  121. Yoshimoto, S., Sawaguchi, T., Su, W., Jiang, J. & Kobayashi, N. Superstructure formation and rearrangement in the adlayer of a rare-earth-metal triple-decker sandwich complex at the electrochemical interface. Angew. Chem. Int. Ed. 46, 1071–1074 (2007).

    Article  CAS  Google Scholar 

  122. van Hameren, R. et al. Macroscopic hierarchical surface patterning of porphyrin trimers via self-assembly and dewetting. Science 314, 1433–1436 (2006).

    Article  CAS  PubMed  Google Scholar 

  123. Sánchez, L., Otero, R., Gallego, J. M., Miranda, R. & Martín, N. Ordering fullerenes at the nanometer scale on solid surfaces. Chem. Rev. 109, 2081–2091 (2009).

    Article  PubMed  CAS  Google Scholar 

  124. Sedona, F. et al. Fullerene/porphyrin multicomponent nanostructures on Ag(110): From supramolecular self-assembly to extended copolymers. ACS Nano 4, 5147–5154 (2010).

    Article  CAS  PubMed  Google Scholar 

  125. Yoshimoto, S., Honda, Y., Ito, O. & Itaya, K. Supramolecular pattern of fullerene on 2D bimolecular chessboard consisting of bottom-up assembly of porphyrin and phthalocyanine molecules. J. Am. Chem. Soc. 130, 1085–1092 (2007).

    Article  PubMed  CAS  Google Scholar 

  126. Bonifazi, D. et al. Supramolecular patterned surfaces driven by cooperative assembly of C60 and porphyrins on metal substrates. Angew. Chem. Int. Ed. 43, 4759–4763 (2004).

    Article  CAS  Google Scholar 

  127. Yoshimoto, S. et al. Controlled molecular orientation in an adlayer of a supramolecular assembly consisting of an open-cage C60 derivative and ZnII octaethylporphyrin on Au(111). Angew. Chem. Int. Ed. 43, 3044–3047 (2004).

    Article  CAS  Google Scholar 

  128. Vijayaraghavan, S. et al. Selective supramolecular fullerene–porphyrin interactions and switching in surface-confined C60–Ce(TPP)2 dyads. Nano Lett. 12, 4077–4083 (2012).

    Article  CAS  PubMed  Google Scholar 

  129. Bui, P. T., Nishino, T., Yamamoto, Y. & Shiigi, H. Quantitative exploration of electron transfer in a single noncovalent supramolecular assembly. J. Am. Chem. Soc. 135, 5238–5241 (2013).

    Article  CAS  PubMed  Google Scholar 

  130. Ikeda, A., Hatano, T., Shinkai, S., Akiyama, T. & Yamada, S. Efficient photocurrent generation in novel self-assembled multilayers comprised of [60]fullerene-cationic homooxacalix[3]arene inclusion complex and anionic porphyrin polymer J. Am. Chem. Soc. 123, 4855–4956 (2001).

    Article  CAS  PubMed  Google Scholar 

  131. Li, M. et al. Paradigm shift from self-assembly to commanded assembly of functional materials: recent examples in porphyrin/fullerene supramolecular systems. Sci. Technol. Adv. Mater. 13, 053001 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Takagi, S., Eguchi, M., Tryk, D. A. & Inoue, H. Porphyrin photochemistry in inorganic/organic hybrid materials: Clays, layered semiconductors, nanotubes, and mesoporous materials. J. Photochem. Photobiol. C 7, 104–126 (2006).

    Article  CAS  Google Scholar 

  133. Ishida, Y. et al. Efficient excited energy transfer reaction in clay/porphyrin complex toward an artificial light-harvesting system. J. Am. Chem. Soc. 133, 14280–14286 (2011).

    Article  CAS  PubMed  Google Scholar 

  134. Xu, Y. et al. A graphene hybrid material covalently functionalized with porphyrin: Synthesis and optical limiting property. Adv. Mater. 21, 1275–1279 (2009).

    Article  CAS  Google Scholar 

  135. Jahan, M., Bao, Q. & Loh, K. P. Electrocatalytically active graphene–porphyrin MOF composite for oxygen reduction reaction. J. Am. Chem. Soc. 134, 6707–6713 (2012).

    Article  CAS  PubMed  Google Scholar 

  136. Malig, J., Jux, N. & Guldi, D. M. Toward multifunctional wet chemically functionalized graphene; integration of oligomeric, molecular, and particulate building blocks that reveal photoactivity and redox activity. Acc. Chem. Res. 46, 53–64 (2013).

    Article  CAS  PubMed  Google Scholar 

  137. Makiura, R. et al. Surface nano-architecture of a metal–organic framework. Nature Mater. 9, 565–571 (2010).

    Article  CAS  Google Scholar 

  138. Kay, A. & Grätzel, M. Artificial photosynthesis. 1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins. J. Phys. Chem. 97, 6272–6277 (1993).

    Article  CAS  Google Scholar 

  139. Boussaad, S., Tazi, A. & Leblanc, R. M. Chlorophyll a dimer: A possible primary electron donor for the photosystem II. Proc. Natl Acad. Sci. USA 94, 3504–3506 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Iancu, V. & Hla, S-W. Realization of a four-step molecular switch in scanning tunneling microscope manipulation of single chlorohyll-a molecules. Proc. Natl Acad. Sci. USA 103, 13718–13721 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Balaban, T. S., Tamiaki, H. & Holzwarth, A. R. Chlorins programmed for self-assembly. Top. Curr. Chem. 258, 1–38 (2005).

    Article  CAS  Google Scholar 

  142. Sengupta, S. & Würthner, F. Chlorophyll J-aggregates: From bioinspired dye stacks to nanotubes, liquid crystals, and biosupramolecular electronics. Acc. Chem. Res. 46, 2498–2512 (2013).

    Article  CAS  PubMed  Google Scholar 

  143. Sengupta, S. et al. Biosupramolecular nanowires from chlorophyll dyes with exceptional charge-transport properties. Angew. Chem. Int. Ed. 51, 6378–6382 (2012).

    Article  CAS  Google Scholar 

  144. Collman, J. P. et al. A cytochrome c oxidase model catalyzes oxygen to water reduction under rate-limiting electron flux. Science 315, 1565–1568 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Collman, J. P. & Decreau, R. A. Functional biomimetic models for the active site in the respiratory enzyme cytochrome c oxidase. Chem. Commun. 5065–5076 (2008).

  146. Amdursky, N., Pecht, I., Sheves, M. & Cahen, D. Electron transport via cytochrome c on Si–H surfaces: Roles of Fe and heme. J. Am. Chem. Soc. 135, 6300–6306 (2013).

    Article  CAS  PubMed  Google Scholar 

  147. Ricchelli, F. Photophysical properties of porphyrins in biological membranes. J. Photochem. Photobiol. B 29, 109–118 (1995).

    Article  CAS  PubMed  Google Scholar 

  148. Kamat, N. P. et al. Sensing membrane stress with near IR-emissive porphyrins. Proc. Natl Acad. Sci. USA 108, 13984–13989 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Reeve, J. E. et al. Porphyrins for probing electrical potential across lipid bilayer membranes by second harmonic generation. Angew. Chem. Int. Ed. 52, 9044–9048 (2013).

    Article  CAS  Google Scholar 

  150. Kuimova, M. K. et al. Imaging intracellular viscosity of a single cell during photoinduced cell death. Nature Chem. 1, 69–73 (2009).

    Article  CAS  Google Scholar 

  151. Lovell, J. F. et al. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nature Mater. 10, 324–332 (2011).

    Article  CAS  Google Scholar 

  152. Gerster, D. et al. Photocurrent of a single photosynthetic protein. Nature Nanotech. 7, 673–676 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for support from the European Research Council Advanced Grant MolArt (no. 247299), the Munich Centre for Advanced Photonics (MAP) and TUM Institute for Advanced Study funded by the German Research Foundation (DFG) via the German Excellence Initiative, Canadian NSERC and CFI, the Spanish RyC Programme and other funding schemes. We thank all team members and project partners co-authoring cited joint publications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes V. Barth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Auwärter, W., Écija, D., Klappenberger, F. et al. Porphyrins at interfaces. Nature Chem 7, 105–120 (2015). https://doi.org/10.1038/nchem.2159

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2159

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing