Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Trapping virtual pores by crystal retro-engineering

Abstract

Stable guest-free porous molecular crystals are uncommon. By contrast, organic molecular crystals with guest-occupied cavities are frequently observed, but these cavities tend to be unstable and collapse on removal of the guests—this feature has been referred to as ‘virtual porosity’. Here, we show how we have trapped the virtual porosity in an unstable low-density organic molecular crystal by introducing a second molecule that matches the size and shape of the unstable voids. We call this strategy ‘retro-engineering’ because it parallels organic retrosynthetic analysis, and it allows the metastable two-dimensional hexagonal pore structure in an organic solvate to be trapped in a binary cocrystal. Unlike the crystal with virtual porosity, the cocrystal material remains single crystalline and porous after removal of guests by heating.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis of ‘porous organic cage’ molecules.
Figure 2: A metastable solvate phase of a porous cage, phase 1, has virtual 2D pores but this transforms over time to a denser phase, CC3α, with 3D pores.
Figure 3: Retro-engineering a binary porous cocrystal.
Figure 4: 2D porosity in the stable binary cocrystal is retro-engineered from the unstable CC3 solvate.

Similar content being viewed by others

References

  1. Barbour, L. J. Crystal porosity and the burden of proof. Chem. Commun. 1163–1168 (2006).

  2. Zhang, G. & Mastalerz, M. Organic cage compounds – from shape-persistency to function. Chem. Soc. Rev. 43, 1934–1947 (2014).

    CAS  PubMed  Google Scholar 

  3. Tian, J., Thallapally, P. K. & McGrail, B. P. Porous organic molecular materials. CrystEngComm 14, 1909–1919 (2012).

    CAS  Google Scholar 

  4. Holst, J. R., Trewin, A. & Cooper, A. I. Porous organic molecules. Nature Chem. 2, 915–920 (2010).

    CAS  Google Scholar 

  5. Mastalerz, M. Shape-persistent organic cage compounds by dynamic covalent bond formation. Angew. Chem. Int. Ed. 49, 5042–5053 (2010).

    CAS  Google Scholar 

  6. Mastalerz, M. & Oppel, I. M. Rational construction of an extrinsic porous molecular crystal with an extraordinary high specific surface area. Angew. Chem. Int. Ed. 51, 5252–5255 (2012).

    CAS  Google Scholar 

  7. Zhang, G., Presly, O., White, F., Oppel, I. M. & Mastalerz, M. A permanent mesoporous organic cage with an exceptionally high surface area. Angew. Chem. Int. Ed. 53, 1516–1520 (2014).

    CAS  Google Scholar 

  8. Nelson, A. P., Farha, O. K., Mulfort, K. L. & Hupp, J. T. Supercritical processing as a route to high internal surface areas and permanent microporosity in metal−organic framework materials. J. Am. Chem. Soc. 131, 458–460 (2008).

    Google Scholar 

  9. Herbstein, F. H. Crystalline Molecular Complexes and Compounds: Structures and Principles (Oxford Univ. Press, 2006).

    Google Scholar 

  10. Day, A. I. et al. A cucurbituril-based gyroscane: a new supramolecular form. Angew. Chem. Int. Ed. 41, 275–277 (2002).

    CAS  Google Scholar 

  11. Danylyuk, O. & Suwinska, K. Solid-state interactions of calixarenes with biorelevant molecules. Chem. Commun. 5799–5813 (2009).

  12. Aakeroy, C. B. & Salmon, D. J. Building co-crystals with molecular sense and supramolecular sensibility. CrystEngComm 7, 439–448 (2005).

    Google Scholar 

  13. Musumeci, D., Hunter, C. A., Prohens, R., Scuderi, S. & McCabe, J. F. Virtual cocrystal screening. Chem. Sci. 2, 883–890 (2011).

    CAS  Google Scholar 

  14. Grecu, T. et al. Virtual screening identifies new cocrystals of nalidixic acid. Crys. Growth Des. 14, 1749–1755 (2014).

    CAS  Google Scholar 

  15. Desiraju, G. R. Crystal engineering: a holistic view. Angew. Chem. Int. Ed. 46, 8342–8356 (2007).

    CAS  Google Scholar 

  16. Deng, H. et al. Multiple functional groups of varying ratios in metal–organic frameworks. Science 327, 846–850 (2010).

    CAS  PubMed  Google Scholar 

  17. Eddaoudi, M. et al. Systematic design of pore size and functionality in isoreticular Mofs and their application in methane storage. Science 295, 469–472 (2002).

    CAS  PubMed  Google Scholar 

  18. Tothadi, S., Mukherjee, A. & Desiraju, G. R. Shape and size mimicry in the design of ternary molecular solids: towards a robust strategy for crystal engineering. Chem. Commun. 47, 12080–12082 (2011).

    CAS  Google Scholar 

  19. Natarajan, R. et al. Nanoporous organic alloys. Angew. Chem. Int. Ed. 50, 11386–11390 (2011).

    CAS  Google Scholar 

  20. Natarajan, R. et al. Tunable porous organic crystals: structural scope and adsorption properties of nanoporous steroidal ureas. J. Am. Chem. Soc. 135, 16912–16925 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Travaglini, L., Bridgland, L. N. & Davis, A. P. Cholanamide components for organic alloys; expanding the scope of nanoporous steroidal ureas. Chem. Commun. 50, 4803–4805 (2014).

    CAS  Google Scholar 

  22. Bezzu, C. G., Helliwell, M., Warren, J. E., Allan, D. R. & McKeown, N. B. Heme-like coordination chemistry within nanoporous molecular crystals. Science 327, 1627–1630 (2010).

    CAS  PubMed  Google Scholar 

  23. Jones, J. T. A. et al. Modular and predictable assembly of porous organic molecular crystals. Nature 474, 367–371 (2011).

    CAS  PubMed  Google Scholar 

  24. Hasell, T., Chong, S. Y., Jelfs, K. E., Adams, D. J. & Cooper, A. I. Porous organic cage nanocrystals by solution mixing. J. Am. Chem. Soc. 134, 588–598 (2011).

    PubMed  Google Scholar 

  25. Hasell, T., Chong, S. Y., Schmidtmann, M., Adams, D. J. & Cooper, A. I. Porous organic alloys. Angew. Chem. Int. Ed. 51, 7154–7157 (2012).

    CAS  Google Scholar 

  26. Tozawa, T. et al. Porous organic cages. Nature Mater. 8, 973–978 (2009).

    CAS  Google Scholar 

  27. Little, M. A., Chong, S. Y., Schmidtmann, M., Hasell, T. & Cooper, A. I. Guest control of structure in porous organic cages. Chem. Commun. 50, 9465–9468 (2014).

    CAS  Google Scholar 

  28. Thallapally, P. K., Dalgarno, S. J. & Atwood, J. L. Frustrated organic solids display unexpected gas sorption. J. Am. Chem. Soc. 128, 15060–15061 (2006).

    CAS  PubMed  Google Scholar 

  29. MacDowell, D. & Nelson, J. Facile synthesis of a new family of cage molecules. Tetrahedron Lett. 29, 385–386 (1988).

    CAS  Google Scholar 

  30. Drew, M. G. B., McDowell, D. & Nelson, J. A new ditopic polyaza macrobicyclic ligand X-ray crystallographic structure determination. Polyhedron 7, 2229–2232 (1988).

    CAS  Google Scholar 

  31. Bojdys, M. J. et al. Porous organic cage crystals: characterising the porous crystal surface. Chem. Commun. 48, 11948–11950 (2012).

    CAS  Google Scholar 

  32. Atwood, J. L., Barbour, L. J., Jerga, A. & Schottel, B. L. Guest transport in a nonporous organic solid via dynamic van der Waals cooperativity. Science 298, 1000–1002 (2002).

    CAS  PubMed  Google Scholar 

  33. Jin, Y. et al. Highly CO2-selective organic molecular cages: what determines the CO2 selectivity. J. Am. Chem. Soc. 133, 6650–6658 (2011).

    CAS  PubMed  Google Scholar 

  34. Jin, Y., Voss, B. A., Noble, R. D. & Zhang, W. A shape-persistent organic molecular cage with high selectivity for the adsorption of CO2 over N2 . Angew. Chem. Int. Ed. 49, 6348–6351 (2010).

    CAS  Google Scholar 

  35. Schneider, M. W., Oppel, I. M. & Mastalerz, M. Exo-functionalized shape-persistent [2+3] cage compounds: influence of molecular rigidity on formation and permanent porosity. Chem. Eur. J. 18, 4156–4160 (2012).

    CAS  PubMed  Google Scholar 

  36. Mastalerz, M., Schneider, M. W., Oppel, I. M. & Presly, O. A salicylbisimine cage compound with high surface area and selective CO2/CH4 adsorption. Angew. Chem. Int. Ed. 50, 1046–1051 (2011).

    CAS  Google Scholar 

  37. Liu, M. et al. Acid- and base-stable porous organic cages: shape persistence and pH stability via post-synthetic ‘tying’ of a flexible amine cage. J. Am. Chem. Soc. 136, 7583–7586 (2014).

    CAS  PubMed  Google Scholar 

  38. Jones, W., Theocharis, C. R., Thomas, J. M. & Desiraju, G. R. Structural mimicry and the photoreactivity of organic solids. Chem. Commun. 1443–1444 (1983).

  39. Kitchen, D. B., Decornez, H., Furr, J. R. & Bajorath, J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nature Rev. Drug Discov. 3, 935–949 (2004).

    CAS  Google Scholar 

  40. Lewis, D. W., Willock, D. J., Catlow, C. R. A., Thomas, J. M. & Hutchings, G. J. De novo design of structure-directing agents for the synthesis of microporous solids. Nature 382, 604–606 (1996).

    CAS  Google Scholar 

  41. Pophale, R., Daeyaert, F. & Deem, M. W. Computational prediction of chemically synthesizable organic structure directing agents for zeolites. J. Mater. Chem. A 1, 6750–6760 (2013).

    CAS  Google Scholar 

  42. Price, S. L. Computed crystal energy landscapes for understanding and predicting organic crystal structures and polymorphism. Acc. Chem. Res. 42, 117–126 (2008).

    Google Scholar 

  43. Nowell, H., Barnett, S. A., Christensen, K. E., Teat, S. J. & Allan, D. R. I19, the small-molecule single-crystal diffraction beamline at Diamond Light Source. J. Synchr. Rad. 19, 435–441 (2012).

    CAS  Google Scholar 

  44. Sheldrick, G. M. SADABS (University of Göttingen, Germany, 2008).

    Google Scholar 

  45. Sheldrick, G. M. A short history of SHELX. Acta Cryst. Sec. A 64, 112–122 (2008).

    CAS  Google Scholar 

  46. Thompson, S. P. et al. Fast X-ray powder diffraction on I11 at Diamond. J. Synchr. Rad. 18, 637–648 (2011).

    CAS  Google Scholar 

  47. Parker, J. E., Potter, J., Thompson, S. P., Lennie, A. R. & Tang, C. C. In situ gas supply system on the powder diffraction beamline I11 at Diamond Light Source. Mater. Sci. Forum 706–709, 1707–1712 (2012).

    Google Scholar 

  48. TOPAS academic version 4.1 (Coelho Software, Brisbane, 2007).

  49. Jorgensen, W. L., Maxwell, D. S. & Tirado-Rives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996).

    CAS  Google Scholar 

  50. Robeson, L. M. Correlation of separation factor versus permeability for polymeric membranes. J. Membr. Sci. 165–185 (1991).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Engineering and Physical Sciences Research Council (EP/H000925/1) and European Research Council (ERC) under the European Union's Seventh Framework Programme/ERC Grant Agreement No. [321156] for financial support. K.E.J. is a Royal Society University Research Fellow. We thank R. Clowes for assistance with the sorption measurements and S. Higgins for assistance with the robotic handling apparatus. The authors thank Diamond Light Source for access to beamlines I19 (MT8728) and I11 (EE9282) that contributed to the results presented here and also M. R. Warren and S. A. Barnett for their assistance during the single-crystal gas cell studies.

Author information

Authors and Affiliations

Authors

Contributions

A.I.C. conceived the project. M.E.B., M.A.L. and T.H. prepared the cage molecules. M.A.L., T.H. and J.T.A.J. crystallized and cocrystallized the cage molecules. M.A.L., M.S. and S.Y.C. interpreted the crystal data. M.A.L., T.H. and L.C. interpreted the sorption data. K.E.J. modelled the cage conformers. All authors interpreted the structures and contributed to the preparation of the manuscript.

Corresponding author

Correspondence to Andrew I. Cooper.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 14892 kb)

Supplementary information

Crystallographic data for [3+2]#1.(H2O)13. (CIF 3185 kb)

Supplementary information

Crystallographic data for [3+2]#5. (CIF 2394 kb)

Supplementary information

Crystallographic data for 2(CC3-R)([3+2]#5) at 400K. (CIF 2363 kb)

Supplementary information

Crystallographic data for 2(CC3-R)([3+2]#5) at 450K. (CIF 2334 kb)

Supplementary information

Crystallographic data for (CC3-R)2.[3+2]#5 at 100K. (CIF 2632 kb)

Supplementary information

Crystallographic data for (CC3-R)2.[3+2]#5 at 300K. (CIF 2559 kb)

Supplementary information

Crystallographic data for (CC3-R)2.[3+2]#5 under dynamic vacuum. (CIF 1427 kb)

Supplementary information

Crystallographic data for (CC3-R)2.[3+2]#5.(CHCl3)2.(MeOH)8 at 100K. (CIF 2765 kb)

Supplementary information

Crystallographic data for (CC3-R)2.[3+2]#5.(CHCl3)0.5.(MeOH)1.5 at 300K. (CIF 2744 kb)

Supplementary information

Crystallographic data for CC3-R.CH2Cl2.(MeOH)7.(H2O)2.5. (CIF 3369 kb)

Supplementary information

Crystallographic data for CC3-R.(MeOH)11.(H2O)4. (CIF 2412 kb)

Supplementary information

Crystallographic data for (CC3-R)2. (CIF 1648 kb)

Supplementary information

Crystallographic data for (CC3-R)2.(CH2Cl2)0.5.(MeOH)11.(H2O)10.5. (CIF 5903 kb)

Supplementary information

Crystallographic data for (CC3-R)2.(CHCl3)3.(MeOH)7.(H2O)4.75. (CIF 4810 kb)

Supplementary information

Crystallographic data for Reduced [3+2]#4.(H2O)15. (CIF 2725 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Little, M., Briggs, M., Jones, J. et al. Trapping virtual pores by crystal retro-engineering. Nature Chem 7, 153–159 (2015). https://doi.org/10.1038/nchem.2156

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2156

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing