Abstract
Stable guest-free porous molecular crystals are uncommon. By contrast, organic molecular crystals with guest-occupied cavities are frequently observed, but these cavities tend to be unstable and collapse on removal of the guests—this feature has been referred to as ‘virtual porosity’. Here, we show how we have trapped the virtual porosity in an unstable low-density organic molecular crystal by introducing a second molecule that matches the size and shape of the unstable voids. We call this strategy ‘retro-engineering’ because it parallels organic retrosynthetic analysis, and it allows the metastable two-dimensional hexagonal pore structure in an organic solvate to be trapped in a binary cocrystal. Unlike the crystal with virtual porosity, the cocrystal material remains single crystalline and porous after removal of guests by heating.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Barbour, L. J. Crystal porosity and the burden of proof. Chem. Commun. 1163–1168 (2006).
Zhang, G. & Mastalerz, M. Organic cage compounds – from shape-persistency to function. Chem. Soc. Rev. 43, 1934–1947 (2014).
Tian, J., Thallapally, P. K. & McGrail, B. P. Porous organic molecular materials. CrystEngComm 14, 1909–1919 (2012).
Holst, J. R., Trewin, A. & Cooper, A. I. Porous organic molecules. Nature Chem. 2, 915–920 (2010).
Mastalerz, M. Shape-persistent organic cage compounds by dynamic covalent bond formation. Angew. Chem. Int. Ed. 49, 5042–5053 (2010).
Mastalerz, M. & Oppel, I. M. Rational construction of an extrinsic porous molecular crystal with an extraordinary high specific surface area. Angew. Chem. Int. Ed. 51, 5252–5255 (2012).
Zhang, G., Presly, O., White, F., Oppel, I. M. & Mastalerz, M. A permanent mesoporous organic cage with an exceptionally high surface area. Angew. Chem. Int. Ed. 53, 1516–1520 (2014).
Nelson, A. P., Farha, O. K., Mulfort, K. L. & Hupp, J. T. Supercritical processing as a route to high internal surface areas and permanent microporosity in metal−organic framework materials. J. Am. Chem. Soc. 131, 458–460 (2008).
Herbstein, F. H. Crystalline Molecular Complexes and Compounds: Structures and Principles (Oxford Univ. Press, 2006).
Day, A. I. et al. A cucurbituril-based gyroscane: a new supramolecular form. Angew. Chem. Int. Ed. 41, 275–277 (2002).
Danylyuk, O. & Suwinska, K. Solid-state interactions of calixarenes with biorelevant molecules. Chem. Commun. 5799–5813 (2009).
Aakeroy, C. B. & Salmon, D. J. Building co-crystals with molecular sense and supramolecular sensibility. CrystEngComm 7, 439–448 (2005).
Musumeci, D., Hunter, C. A., Prohens, R., Scuderi, S. & McCabe, J. F. Virtual cocrystal screening. Chem. Sci. 2, 883–890 (2011).
Grecu, T. et al. Virtual screening identifies new cocrystals of nalidixic acid. Crys. Growth Des. 14, 1749–1755 (2014).
Desiraju, G. R. Crystal engineering: a holistic view. Angew. Chem. Int. Ed. 46, 8342–8356 (2007).
Deng, H. et al. Multiple functional groups of varying ratios in metal–organic frameworks. Science 327, 846–850 (2010).
Eddaoudi, M. et al. Systematic design of pore size and functionality in isoreticular Mofs and their application in methane storage. Science 295, 469–472 (2002).
Tothadi, S., Mukherjee, A. & Desiraju, G. R. Shape and size mimicry in the design of ternary molecular solids: towards a robust strategy for crystal engineering. Chem. Commun. 47, 12080–12082 (2011).
Natarajan, R. et al. Nanoporous organic alloys. Angew. Chem. Int. Ed. 50, 11386–11390 (2011).
Natarajan, R. et al. Tunable porous organic crystals: structural scope and adsorption properties of nanoporous steroidal ureas. J. Am. Chem. Soc. 135, 16912–16925 (2013).
Travaglini, L., Bridgland, L. N. & Davis, A. P. Cholanamide components for organic alloys; expanding the scope of nanoporous steroidal ureas. Chem. Commun. 50, 4803–4805 (2014).
Bezzu, C. G., Helliwell, M., Warren, J. E., Allan, D. R. & McKeown, N. B. Heme-like coordination chemistry within nanoporous molecular crystals. Science 327, 1627–1630 (2010).
Jones, J. T. A. et al. Modular and predictable assembly of porous organic molecular crystals. Nature 474, 367–371 (2011).
Hasell, T., Chong, S. Y., Jelfs, K. E., Adams, D. J. & Cooper, A. I. Porous organic cage nanocrystals by solution mixing. J. Am. Chem. Soc. 134, 588–598 (2011).
Hasell, T., Chong, S. Y., Schmidtmann, M., Adams, D. J. & Cooper, A. I. Porous organic alloys. Angew. Chem. Int. Ed. 51, 7154–7157 (2012).
Tozawa, T. et al. Porous organic cages. Nature Mater. 8, 973–978 (2009).
Little, M. A., Chong, S. Y., Schmidtmann, M., Hasell, T. & Cooper, A. I. Guest control of structure in porous organic cages. Chem. Commun. 50, 9465–9468 (2014).
Thallapally, P. K., Dalgarno, S. J. & Atwood, J. L. Frustrated organic solids display unexpected gas sorption. J. Am. Chem. Soc. 128, 15060–15061 (2006).
MacDowell, D. & Nelson, J. Facile synthesis of a new family of cage molecules. Tetrahedron Lett. 29, 385–386 (1988).
Drew, M. G. B., McDowell, D. & Nelson, J. A new ditopic polyaza macrobicyclic ligand X-ray crystallographic structure determination. Polyhedron 7, 2229–2232 (1988).
Bojdys, M. J. et al. Porous organic cage crystals: characterising the porous crystal surface. Chem. Commun. 48, 11948–11950 (2012).
Atwood, J. L., Barbour, L. J., Jerga, A. & Schottel, B. L. Guest transport in a nonporous organic solid via dynamic van der Waals cooperativity. Science 298, 1000–1002 (2002).
Jin, Y. et al. Highly CO2-selective organic molecular cages: what determines the CO2 selectivity. J. Am. Chem. Soc. 133, 6650–6658 (2011).
Jin, Y., Voss, B. A., Noble, R. D. & Zhang, W. A shape-persistent organic molecular cage with high selectivity for the adsorption of CO2 over N2 . Angew. Chem. Int. Ed. 49, 6348–6351 (2010).
Schneider, M. W., Oppel, I. M. & Mastalerz, M. Exo-functionalized shape-persistent [2+3] cage compounds: influence of molecular rigidity on formation and permanent porosity. Chem. Eur. J. 18, 4156–4160 (2012).
Mastalerz, M., Schneider, M. W., Oppel, I. M. & Presly, O. A salicylbisimine cage compound with high surface area and selective CO2/CH4 adsorption. Angew. Chem. Int. Ed. 50, 1046–1051 (2011).
Liu, M. et al. Acid- and base-stable porous organic cages: shape persistence and pH stability via post-synthetic ‘tying’ of a flexible amine cage. J. Am. Chem. Soc. 136, 7583–7586 (2014).
Jones, W., Theocharis, C. R., Thomas, J. M. & Desiraju, G. R. Structural mimicry and the photoreactivity of organic solids. Chem. Commun. 1443–1444 (1983).
Kitchen, D. B., Decornez, H., Furr, J. R. & Bajorath, J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nature Rev. Drug Discov. 3, 935–949 (2004).
Lewis, D. W., Willock, D. J., Catlow, C. R. A., Thomas, J. M. & Hutchings, G. J. De novo design of structure-directing agents for the synthesis of microporous solids. Nature 382, 604–606 (1996).
Pophale, R., Daeyaert, F. & Deem, M. W. Computational prediction of chemically synthesizable organic structure directing agents for zeolites. J. Mater. Chem. A 1, 6750–6760 (2013).
Price, S. L. Computed crystal energy landscapes for understanding and predicting organic crystal structures and polymorphism. Acc. Chem. Res. 42, 117–126 (2008).
Nowell, H., Barnett, S. A., Christensen, K. E., Teat, S. J. & Allan, D. R. I19, the small-molecule single-crystal diffraction beamline at Diamond Light Source. J. Synchr. Rad. 19, 435–441 (2012).
Sheldrick, G. M. SADABS (University of Göttingen, Germany, 2008).
Sheldrick, G. M. A short history of SHELX. Acta Cryst. Sec. A 64, 112–122 (2008).
Thompson, S. P. et al. Fast X-ray powder diffraction on I11 at Diamond. J. Synchr. Rad. 18, 637–648 (2011).
Parker, J. E., Potter, J., Thompson, S. P., Lennie, A. R. & Tang, C. C. In situ gas supply system on the powder diffraction beamline I11 at Diamond Light Source. Mater. Sci. Forum 706–709, 1707–1712 (2012).
TOPAS academic version 4.1 (Coelho Software, Brisbane, 2007).
Jorgensen, W. L., Maxwell, D. S. & Tirado-Rives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996).
Robeson, L. M. Correlation of separation factor versus permeability for polymeric membranes. J. Membr. Sci. 165–185 (1991).
Acknowledgements
The authors gratefully acknowledge the Engineering and Physical Sciences Research Council (EP/H000925/1) and European Research Council (ERC) under the European Union's Seventh Framework Programme/ERC Grant Agreement No. [321156] for financial support. K.E.J. is a Royal Society University Research Fellow. We thank R. Clowes for assistance with the sorption measurements and S. Higgins for assistance with the robotic handling apparatus. The authors thank Diamond Light Source for access to beamlines I19 (MT8728) and I11 (EE9282) that contributed to the results presented here and also M. R. Warren and S. A. Barnett for their assistance during the single-crystal gas cell studies.
Author information
Authors and Affiliations
Contributions
A.I.C. conceived the project. M.E.B., M.A.L. and T.H. prepared the cage molecules. M.A.L., T.H. and J.T.A.J. crystallized and cocrystallized the cage molecules. M.A.L., M.S. and S.Y.C. interpreted the crystal data. M.A.L., T.H. and L.C. interpreted the sorption data. K.E.J. modelled the cage conformers. All authors interpreted the structures and contributed to the preparation of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 14892 kb)
Supplementary information
Crystallographic data for [3+2]#1.(H2O)13. (CIF 3185 kb)
Supplementary information
Crystallographic data for [3+2]#5. (CIF 2394 kb)
Supplementary information
Crystallographic data for 2(CC3-R)([3+2]#5) at 400K. (CIF 2363 kb)
Supplementary information
Crystallographic data for 2(CC3-R)([3+2]#5) at 450K. (CIF 2334 kb)
Supplementary information
Crystallographic data for (CC3-R)2.[3+2]#5 at 100K. (CIF 2632 kb)
Supplementary information
Crystallographic data for (CC3-R)2.[3+2]#5 at 300K. (CIF 2559 kb)
Supplementary information
Crystallographic data for (CC3-R)2.[3+2]#5 under dynamic vacuum. (CIF 1427 kb)
Supplementary information
Crystallographic data for (CC3-R)2.[3+2]#5.(CHCl3)2.(MeOH)8 at 100K. (CIF 2765 kb)
Supplementary information
Crystallographic data for (CC3-R)2.[3+2]#5.(CHCl3)0.5.(MeOH)1.5 at 300K. (CIF 2744 kb)
Supplementary information
Crystallographic data for CC3-R.CH2Cl2.(MeOH)7.(H2O)2.5. (CIF 3369 kb)
Supplementary information
Crystallographic data for CC3-R.(MeOH)11.(H2O)4. (CIF 2412 kb)
Supplementary information
Crystallographic data for (CC3-R)2. (CIF 1648 kb)
Supplementary information
Crystallographic data for (CC3-R)2.(CH2Cl2)0.5.(MeOH)11.(H2O)10.5. (CIF 5903 kb)
Supplementary information
Crystallographic data for (CC3-R)2.(CHCl3)3.(MeOH)7.(H2O)4.75. (CIF 4810 kb)
Supplementary information
Crystallographic data for Reduced [3+2]#4.(H2O)15. (CIF 2725 kb)
Rights and permissions
About this article
Cite this article
Little, M., Briggs, M., Jones, J. et al. Trapping virtual pores by crystal retro-engineering. Nature Chem 7, 153–159 (2015). https://doi.org/10.1038/nchem.2156
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nchem.2156
This article is cited by
-
A smart and responsive crystalline porous organic cage membrane with switchable pore apertures for graded molecular sieving
Nature Materials (2022)
-
Solvophobicity-directed assembly of microporous molecular crystals
Communications Chemistry (2021)
-
Efficient ethylene purification by a robust ethane-trapping porous organic cage
Nature Communications (2021)
-
Permanent porous hydrogen-bonded frameworks with two types of Brønsted acid sites for heterogeneous asymmetric catalysis
Nature Communications (2019)
-
Lattice engineering enables definition of molecular features allowing for potent small-molecule inhibition of HIV-1 entry
Nature Communications (2019)