Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantitative mapping of zinc fluxes in the mammalian egg reveals the origin of fertilization-induced zinc sparks

This article has been updated

Abstract

Fertilization of a mammalian egg initiates a series of ‘zinc sparks’ that are necessary to induce the egg-to-embryo transition. Despite the importance of these zinc-efflux events little is known about their origin. To understand the molecular mechanism of the zinc spark we combined four physical approaches that resolve zinc distributions in single cells: a chemical probe for dynamic live-cell fluorescence imaging and a combination of scanning transmission electron microscopy with energy-dispersive spectroscopy, X-ray fluorescence microscopy and three-dimensional elemental tomography for high-resolution elemental mapping. We show that the zinc spark arises from a system of thousands of zinc-loaded vesicles, each of which contains, on average, 106 zinc atoms. These vesicles undergo dynamic movement during oocyte maturation and exocytosis at the time of fertilization. The discovery of these vesicles and the demonstration that zinc sparks originate from them provides a quantitative framework for understanding how zinc fluxes regulate cellular processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Vital zinc probe reveals cortical compartments in the female gamete in mouse.
Figure 2: Labile zinc is cortically localized in the oocyte and tracks with CG staining.
Figure 3: Zinc fixation enables ultrastructural identification of zinc-enriched cortical compartments by STEM-EDS.
Figure 4: XFM and tomography provide zinc quantification and mapping within the egg.
Figure 5: Live-cell fluorescence zinc imaging demonstrates that intracellular zinc compartments are the source of the extracellular zinc spark.
Figure 6: The zinc flux during egg activation is regulated by a quantitative loss of cortical zinc compartments.

Similar content being viewed by others

Change history

  • 23 December 2014

    In the version of this Article previously published online, the NIH grant number T32GM105538 was missing from the Acknowledgements section. This has now been corrected in all versions of the Article.

References

  1. Berg, J. M. & Shi, Y. The galvanization of biology: a growing appreciation for the roles of zinc. Science 271, 1081–1085 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Finney, L. A. & O'Halloran, T. V. Transition metal speciation in the cell: insights from the chemistry of metal ion receptors. Science 300, 931–936 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. O'Halloran, T. V. Transition metals in control of gene expression. Science 261, 715–725 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Maret, W. Zinc biochemistry: from a single zinc enzyme to a key element of life. Adv. Nutr. 4, 82–91 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kim, A. M., Vogt, S., O'Halloran, T. V. & Woodruff, T. K. Zinc availability regulates exit from meiosis in maturing mammalian oocytes. Nature Chem. Biol. 6, 674–681 (2010).

    Article  CAS  Google Scholar 

  6. Kim, A. M. et al. Zinc sparks are triggered by fertilization and facilitate cell cycle resumption in mammalian eggs. ACS Chem. Biol. 6, 716–723 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bernhardt, M. L., Kim, A. M., O'Halloran, T. V. & Woodruff, T. K. Zinc requirement during meiosis I–meiosis II transition in mouse oocytes is independent of the MOS–MAPK pathway. Biol. Reprod. 84, 526–536 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Bernhardt, M. L., Kong, B. Y., Kim, A. M., O'Halloran, T. V. & Woodruff, T. K. A zinc-dependent mechanism regulates meiotic progression in mammalian oocytes. Biol. Reprod. 86, 114 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Kong, B. Y., Bernhardt, M. L., Kim, A. M., O'Halloran, T. V. & Woodruff, T. K. Zinc maintains prophase I arrest in mouse oocytes through regulation of the MOS–MAPK pathway. Biol. Reprod. 87, 11, 11–12 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Suzuki, T., Yoshida, N., Suzuki, E., Okuda, E. & Perry, A. C. Full-term mouse development by abolishing Zn2+-dependent metaphase II arrest without Ca2+ release. Development 137, 2659–2669 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Tian, X. & Diaz, F. J. Zinc depletion causes multiple defects in ovarian function during the periovulatory period in mice. Endocrinology 153, 873–886 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Krauchunas, A. R. & Wolfner, M. F. in Gametogenesis (ed. Wassarman P. M.) 267–292 (Current Topics in Developmental Biology, 102, Academic Press, 2013).

  13. Suzuki, T. et al. Mouse Emi2 as a distinctive regulatory hub in second meiotic metaphase. Development 137, 3281–3291 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kong, B. Y. et al. Maternally-derived zinc transporters ZIP6 and ZIP10 drive the mammalian oocyte-to-egg transition. Mol. Hum. Reprod. 20, 1077–1089 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Catterall, A. Structure and function of voltage-gated ion channels. Annu. Rev. Biochem. 64, 493–531 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Cousins, R. J., Liuzzi, J. P. & Lichten, L. A. Mammalian zinc transport, trafficking, and signals. J. Biol. Chem. 281, 24085–24089 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Kühlbrandt, W. Biology, structure and mechanism of P-type ATPases. Nature Rev. Mol. Cell Biol. 5, 282–295 (2004).

    Article  CAS  Google Scholar 

  18. Chimienti, F., Devergnas, S., Favier, A. & Seve, M. Identification and cloning of a beta-cell-specific zinc transporter, ZnT-8, localized into insulin secretory granules. Diabetes 53, 2330–2337 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Frederickson, C. J., Suh, S. W., Silva, D., Frederickson, C. J. & Thompson, R. B. Importance of zinc in the central nervous system: the zinc-containing neuron. J. Nutr. 130, 1471S–1483S (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Palmiter, R. D., Cole, T. B., Quaife, C. J. & Findley, S. D. ZnT-3, a putative transporter of zinc into synaptic vesicles. Proc. Natl Acad. Sci. USA 93, 14934–14939 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yamasaki, S. et al. Zinc is a novel intracellular second messenger. J. Cell Biol. 177, 637–645 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zalewski, P. D. et al. Video image analysis of labile zinc in viable pancreatic islet cells using a specific fluorescent probe for zinc. J. Histochem. Cytochem. 42, 877–884 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Fierke, C. A. & Thompson, R. B. Fluorescence-based biosensing of zinc using carbonic anhydrase. Biometals 14, 205–222 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Palmer, A. E., Qin, Y., Park, J. G. & McCombs, J. E. Design and application of genetically encoded biosensors. Trends Biotechnol. 29, 144–152 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Que, E. L., Domaille, D. W. & Chang, C. J. Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem. Rev. 108, 1517–1549 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Tomat, E. & Lippard, S. J. Imaging mobile zinc in biology. Curr. Opin. Chem. Biol. 14, 225–230 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fahrni, C. J. & O'Halloran, T. V. Aqueous coordination chemistry of quinoline-based fluorescence probes for the biological chemistry of zinc. J. Am. Chem. Soc. 121, 11448–11458 (1999).

    Article  CAS  Google Scholar 

  28. Cork, R. Problems with the application of quin-2-AM to measuring cytoplasmic free calcium in plant cells. Plant Cell Environ. 9, 157–161 (1986).

    Article  CAS  Google Scholar 

  29. Laha, J. K., Dhanalekshmi, S., Taniguchi, M., Ambroise, A. & Lindsey, J. S. A Scalable synthesis of meso-substituted dipyrromethanes. Org. Proc. Res. Devel. 7, 799–812 (2003).

    Article  CAS  Google Scholar 

  30. Domaille, D. W., Zeng, L. & Chang, C. J. Visualizing ascorbate-triggered release of labile copper within living cells using a ratiometric fluorescent sensor. J. Am. Chem. Soc. 132, 1194–1195 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hureau, C. et al. Syntheses, X-ray structures, solid state high-field electron paramagnetic resonance, and density-functional theory investigations on chloro and aqua MnII mononuclear complexes with amino-pyridine pentadentate ligands. Inorg. Chem. 47, 9238–9247 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Ambundo, E. A. et al. Influence of coordination geometry upon copper(II/I) redox potentials. Physical parameters for twelve copper tripodal ligand complexes. Inorg. Chem. 38, 4233–4242 (1999).

    Article  CAS  Google Scholar 

  33. Rae, T. D., Schmidt, P. J., Pufahl, R. A., Culotta, V. C. & O'Halloran, T. V. Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science 284, 805–808 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Andrews, J. C., Nolan, J. P., Hammerstedt, R. H. & Bavister, B. D. Role of zinc during hamster sperm capacitation. Biol. Reprod. 51, 1238–1247 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Stoltenberg, M. et al. Autometallographic demonstration of zinc ions in rat sperm cells. Mol. Hum. Reprod. 3, 763–767 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Zalewski, P. et al. Use of a zinc fluorophore to measure labile pools of zinc in body fluids and cell-conditioned media. Biotechniques 40, 509–520 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Outten, C. E. & O'Halloran, T. V. Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 292, 2488–2492 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Fahrni, C. J. Synthetic fluorescent probes for monovalent copper. Curr. Opin. Chem. Biol. (2013).

  39. Gee, K. R., Zhou, Z. L., Qian, W. J. & Kennedy, R. Detection and imaging of zinc secretion from pancreatic beta-cells using a new fluorescent zinc indicator. J. Am. Chem. Soc. 124, 776–778 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Burdette, S. C., Frederickson, C. J., Bu, W. & Lippard, S. J. ZP4, an improved neuronal Zn2+ sensor of the Zinpyr family. J. Am. Chem. Soc. 125, 1778–1787 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Ducibella, T., Anderson, E., Albertini, D. F., Aalberg, J. & Rangarajan, S. Quantitative studies of changes in cortical granule number and distribution in the mouse oocyte during meiotic maturation. Dev. Biol. 130, 184–197 (1988).

    Article  CAS  PubMed  Google Scholar 

  42. Wessel, G. M. et al. The biology of cortical granules. Int. Rev. Cytol. 209, 117–206 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Burkart, A. D., Xiong, B., Baibakov, B., Jimenez-Movilla, M. & Dean, J. Ovastacin, a cortical granule protease, cleaves ZP2 in the zona pellucida to prevent polyspermy. J. Cell Biol. 197, 37–44 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tahara, M. et al. Dynamics of cortical granule exocytosis at fertilization in living mouse eggs. Am. J. Physiol. 270, C1354–1361 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Stika, K. M., Bielat, K. L. & Morrison, G. H. Diffusible ion localization by ion microscopy: a comparison of chemically prepared and fast-frozen, freeze-dried, unfixed liver sections. J. Microsc. 118, 409–420 (1980).

    Article  CAS  PubMed  Google Scholar 

  46. Timm, F. Histochemistry of heavy metals; the sulfide–silver procedure. Dtsch Z. Gesamte Gerichtl Med. 46, 706–711 (1958).

    CAS  PubMed  Google Scholar 

  47. Danscher, G., Stoltenberg, M., Bruhn, M., Sondergaard, C. & Jensen, D. Immersion autometallography: histochemical in situ capturing of zinc ions in catalytic zinc–sulfur nanocrystals. J. Histochem. Cytochem. 52, 1619–1625 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Licht, S. Aqueous solubilities, solubility products and standard oxidation–reduction potentials of the metal sulfides. J. Electrochem. Soc. 135, 2971–2975 (1988).

    Article  CAS  Google Scholar 

  49. Wu, J. S. et al. Imaging and elemental mapping of biological specimens with a dual-EDS dedicated scanning transmission electron microscope. Ultramicroscopy 128, 24–31 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chen, S. et al. The Bionanoprobe: hard X-ray fluorescence nanoprobe with cryogenic capabilities. J. Synchrotron Radiat. 21, 66–75 (2014).

    Article  PubMed  CAS  Google Scholar 

  51. Hong, Y. P. et al. Alignment of low-dose X-ray fluorescence tomography images using differential phase contrast. J. Synchrotron Radiat. 21, 229–234 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Gleber, S-C. et al. New developments in hard X-ray fluorescence microscopy for in-situ investigations of trace element distributions in aqueous systems of soil colloids. J. Phys. Conf. Ser. 463, 012005 (2013).

    Article  CAS  Google Scholar 

  53. Frederickson, C. J., Klitenick, M. A., Manton, W. I. & Kirkpatrick, J. B. Cytoarchitectonic distribution of zinc in the hippocampus of man and the rat. Brain Res. 273, 335–339 (1983).

    Article  CAS  PubMed  Google Scholar 

  54. Foresta, C. et al. Role of zinc trafficking in male fertility: from germ to sperm. Hum. Reprod. 29, 1134–1145 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Lishko, P. V. & Kirichok, Y. The role of Hv1 and CatSper channels in sperm activation. J. Physiol. 588, 4667–4672 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank members of the O'Halloran, Woodruff and Dravid labs for scientific discussions and advice. We thank E. W. Roth for the preparation of electron microscopy samples and J-H. Chung and J. Shangguan for help with chemical syntheses. Equipment and experimental guidance were provided by the following core facilities at Northwestern University: the Integrated Molecular Structure Education and Research Center, the Biological Imaging Facility, the Quantitative Bioelemental Imaging Center, the Electron Probe Instrumentation Centre and the Keck Biophysics Facility. This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under contract no. DE-AC02-06CH11357. This work was supported by a Medical Research Award from the W. M. Keck Foundation, a SPARK Award from the Chicago Biomedical Consortium and the National Institutes of Health (P01 HD021921, GM38784, U54HD076188 and T32GM105538).

Author information

Authors and Affiliations

Authors

Contributions

E.L.Q., R.B., F.E.D., B.Y.K., V.P.D., T.K.W. and T.V.O. designed the research. E.L.Q., R.B., F.E.D., B.Y.K., S.A.G. and A.R.B. performed the research. S.C.G., S.V. and S.C. helped design and implement XFM experiments and process and analyse the data. E.L.Q., R.B., F.E.D., T.K.W. and T.V.O. wrote the manuscript. All the authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Teresa K. Woodruff or Thomas V. O'Halloran.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 6382 kb)

Supplementary movie 1

Supplementary movie 1 (MOV 822 kb)

Supplementary movie 2

Supplementary movie 2 (MOV 12334 kb)

Supplementary movie 3

Supplementary movie 3 (MOV 5802 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Que, E., Bleher, R., Duncan, F. et al. Quantitative mapping of zinc fluxes in the mammalian egg reveals the origin of fertilization-induced zinc sparks. Nature Chem 7, 130–139 (2015). https://doi.org/10.1038/nchem.2133

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2133

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing