Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li–O2 batteries

Subjects

Abstract

Given their high theoretical specific energy, lithium–oxygen batteries have received enormous attention as possible alternatives to current state-of-the-art rechargeable Li–ion batteries. However, the maximum discharge capacity in non-aqueous lithium–oxygen batteries is limited to a small fraction of its theoretical value due to the build-up of insulating lithium peroxide (Li2O2), the battery’s primary discharge product. The discharge capacity can be increased if Li2O2 forms as large toroidal particles rather than as a thin conformal layer. Here, we show that trace amounts of electrolyte additives, such as H2O, enhance the formation of Li2O2 toroids and result in significant improvements in capacity. Our experimental observations and a growth model show that the solvating properties of the additives prompt a solution-based mechanism that is responsible for the growth of Li2O2 toroids. We present a general formalism describing an additive’s tendency to trigger the solution process, providing a rational design route for electrolytes that afford larger lithium–oxygen battery capacities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Li2O2 discharge product morphology control.
Figure 2: Discharge capacity increase with increasing water content in the electrolyte.
Figure 3: Ex situ XRD measurements on discharged cathodes.
Figure 4: The two pathways for Li2O2 formation.
Figure 5: Proposed mechanism for the growth of Li2O2 toroids in the presence of water.
Figure 6: Quantitative basis for solvent selection for high-capacity Li–O2 batteries.

Similar content being viewed by others

References

  1. Imanishi, N., Luntz, A. C. & Bruce, P. G. The Lithium Air Battery (Springer, 2014).

    Google Scholar 

  2. Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J-M. Li–O2 and Li–S batteries with high energy storage. Nature Mater. 11, 19–29 (2012).

    CAS  Google Scholar 

  3. Hummelshoj, J. S. et al. Communications: elementary oxygen electrode reactions in the aprotic Li–air battery. J. Chem. Phys. 132, 071101 (2010).

    CAS  PubMed  Google Scholar 

  4. Laoire, C. O., Mukerjee, S., Abraham, K. M., Plichta, E. J. & Hendrickson, M. A. Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium–air battery. J. Phys. Chem. C 114, 9178–9186 (2010).

    CAS  Google Scholar 

  5. Laoire, C. O., Mukerjee, S., Abraham, K. M., Plichta, E. J. & Hendrickson, M. A. Elucidating the mechanism of oxygen reduction for lithium–air battery applications. J. Phys. Chem. C 113, 20127–20134 (2009).

    CAS  Google Scholar 

  6. Abraham, K. M. & Jiang, Z. A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 143, 1–5 (1996).

    CAS  Google Scholar 

  7. Ogasawara, T., Débart, A., Holzapfel, M., Novák, P. & Bruce, P. G. Rechargeable Li2O2 electrode for lithium batteries. J. Am. Chem. Soc. 128, 1390–1393 (2006).

    CAS  Google Scholar 

  8. McCloskey, B. D., Scheffler, R., Speidel, A., Girishkumar, G. & Luntz, A. C. On the mechanism of nonaqueous Li–O2 electrochemistry on C and its kinetic overpotentials: some implications for Li–air batteries. J. Phys. Chem. C 116, 23897–23905 (2012).

    CAS  Google Scholar 

  9. Girishkumar, G., McCloskey, B., Luntz, A. C., Swanson, S. & Wilcke, W. Lithium–air battery: promise and challenges. J. Phys. Chem. Lett. 1, 2193–2203 (2010).

    CAS  Google Scholar 

  10. Christensen, J. et al. A critical review of Li/air batteries. J. Electrochem. Soc. 159, R1–R30 (2011).

    Google Scholar 

  11. McCloskey, B. D. et al. Limitations in rechargeability of Li–O2 batteries and possible origins. J. Phys. Chem. Lett. 3, 3043–3047 (2012).

    CAS  PubMed  Google Scholar 

  12. McCloskey, B. D. et al. Combining accurate O2 and Li2O2 assays to separate discharge and charge stability limitations in nonaqueous Li–O2 batteries. J. Phys. Chem. Lett. 4, 2989–2993 (2013).

    CAS  PubMed  Google Scholar 

  13. Freunberger, S. A. et al. The lithium–oxygen battery with ether-based electrolytes. Angew. Chem. Int. Ed. 50, 8609–8613 (2011).

    CAS  Google Scholar 

  14. Shao, Y. et al. Making Li–air batteries rechargeable: material challenges. Adv. Funct. Mater. 23, 987–1004 (2013).

    CAS  Google Scholar 

  15. Bryantsev, V. S. et al. Predicting solvent stability in aprotic electrolyte Li–air batteries: nucleophilic substitution by the superoxide anion radical (O2•–). J. Phys. Chem. A 115, 12399–12409 (2011).

    CAS  PubMed  Google Scholar 

  16. Bryantsev, V. S. et al. The identification of stable solvents for nonaqueous rechargeable Li–air batteries. J. Electrochem. Soc. 160, A160–A171 (2013).

    CAS  Google Scholar 

  17. Assary, R. S., Lau, K. C., Amine, K., Sun, Y-K. & Curtiss, L. A. Interactions of dimethoxy ethane with Li2O2 clusters and likely decomposition mechanisms for Li–O2 batteries. J. Phys. Chem. C 117, 8041–8049 (2013).

    CAS  Google Scholar 

  18. Younesi, R., Norby, P. & Vegge, T. A new look at the stability of dimethyl sulfoxide and acetonitrile in Li–O2 batteries. ECS Electrochem. Lett. 3, A15–A18 (2014).

    CAS  Google Scholar 

  19. Albertus, P. et al. Identifying capacity limitations in the Li/oxygen battery using experiments and modeling. J. Electrochem. Soc. 158, A343–A351 (2011).

    CAS  Google Scholar 

  20. Luntz, A. C. et al. Tunneling and polaron charge transport through Li2O2 in Li–O2 batteries. J. Phys. Chem. Lett. 4, 3494–3499 (2013).

    CAS  Google Scholar 

  21. Viswanathan, V. et al. Electrical conductivity in Li2O2 and its role in determining capacity limitations in non-aqueous Li–O2 batteries. J. Chem. Phys. 135, 214704 (2011).

    CAS  PubMed  Google Scholar 

  22. Radin, M. & Siegel, D. Charge transport in lithium peroxide: relevance for rechargeable metal-air batteries. Energy Environ. Sci. 6, 2370–2379 (2013).

    CAS  Google Scholar 

  23. Radin, M. D., Feng, T. & Siegel, D. J. Electronic structure of Li2O2{0001} surfaces. J. Mater. Sci. 47, 7564–7570 (2012).

    CAS  Google Scholar 

  24. Adams, B. D. et al. Current density dependence of peroxide formation in the Li–O2 battery and its effect on charge. Energy Environ. Sci. 6, 1772–1778 (2013).

    CAS  Google Scholar 

  25. Black, R., Adams, B. & Nazar, L. F. Non-aqueous and hybrid Li–O2 batteries. Adv. Energy Mater. 2, 801–815 (2012).

    CAS  Google Scholar 

  26. Zhai, D. et al. Disproportionation in Li–O2 batteries based on a large surface area carbon cathode. J. Am. Chem. Soc. 135, 15364–15372 (2013).

    CAS  PubMed  Google Scholar 

  27. Xu, J-J., Wang, Z-L., Xu, D., Zhang, L-L. & Zhang, X-B. Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium–oxygen batteries. Nature Commun. 4, 2438 (2013).

    Google Scholar 

  28. Fan, W., Cui, Z. & Guo, X. Tracking formation and decomposition of abacus-ball-shaped lithium peroxides in Li–O2 cells. J. Phys. Chem. C 117, 2623–2627 (2013).

    CAS  Google Scholar 

  29. Mitchell, R. R., Gallant, B. M., Shao-Horn, Y. & Thompson, C. V. Mechanisms of morphological evolution of Li2O2 particles during electrochemical growth. J. Phys. Chem. Lett. 4, 1060–1064 (2013).

    CAS  PubMed  Google Scholar 

  30. Hummelshoj, J. S., Luntz, A. C. & Norskov, J. K. Theoretical evidence for low kinetic overpotentials in Li–O2 electrochemistry. J. Chem. Phys. 138, 034703–034712 (2013).

    CAS  PubMed  Google Scholar 

  31. Ottakam Thotiyl, M. M. et al. A stable cathode for the aprotic Li–O2 battery. Nature Mater. 12, 1050–1056 (2013).

    CAS  Google Scholar 

  32. Gallant, B. M. et al. Influence of Li2O2 morphology on oxygen reduction and evolution kinetics in Li–O2 batteries. Energy Environ. Sci. 6, 2518–2528 (2013).

    CAS  Google Scholar 

  33. Horstmann, B. et al. Rate-dependent morphology of Li2O2 growth in Li–O2 batteries. J. Phys. Chem. Lett. 4, 4217–4222 (2013).

    CAS  PubMed  Google Scholar 

  34. Guo, Z., Dong, X., Yuan, S., Wang, Y. & Xia, Y. Humidity effect on electrochemical performance of Li–O2 batteries. J. Power Sources 264, 1–7 (2014).

    CAS  Google Scholar 

  35. Cho, M. H. et al. The effects of moisture contamination in the Li–O2 battery. J. Power Sources 268, 565–574 (2014).

    CAS  Google Scholar 

  36. Meini, S., Piana, M., Tsiouvaras, N., Garsuch, A. & Gasteiger, H. A. The effect of water on the discharge capacity of a non-catalyzed carbon cathode for Li–O2 batteries. Electrochem. Solid-State Lett. 15, A45–A48 (2012).

    CAS  Google Scholar 

  37. Jung, H-G. et al. A transmission electron microscopy study of the electrochemical process of lithium–oxygen cells. Nano. Lett. 12, 4333–4335 (2012).

    CAS  PubMed  Google Scholar 

  38. Tian, F., Radin, M. D. & Siegel, D. J. Enhanced charge transport in amorphous Li2O2 . Chem. Mater. 26, 2952–2959 (2014).

    CAS  Google Scholar 

  39. McCloskey, B. D. et al. Twin problems of interfacial carbonate formation in nonaqueous Li–O2 batteries. J. Phys. Chem. Lett. 3, 997–1001 (2012).

    CAS  Google Scholar 

  40. Peng, Z. et al. Oxygen reactions in a non-aqueous Li+ electrolyte. Angew. Chem. Int. Ed. 50, 6351–6355 (2011).

    CAS  Google Scholar 

  41. Mo, Y., Ong, S. P. & Ceder, G. First-principles study of the oxygen evolution reaction of lithium peroxide in the lithium–air battery. Phys. Rev. B 84, 205446 (2011).

    Google Scholar 

  42. Che, Y. et al. Water-induced disproportionation of superoxide ion in aprotic solvents. J. Phys. Chem. 100, 20134–20137 (1996).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank R. Shelby for Raman measurements, D. Bethune and G. Wallraff for discussions and help with experiments and the IBM model shop for support with the DEMS system. N.B.A. acknowledges guidance from H.C. Kim and W.W. Wilcke. V.V. is supported by a faculty startup grant from Carnegie Mellon University.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the design of the research. N.B.A., J.M.G. and L.E.K. performed the experimental measurements and N.B.A. performed the experimental data analysis. V.V. and A.C.L. designed the theoretical calculations, which V.V. then performed. N.B.A., B.D.M., V.V. and A.C.L. co-wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Nagaphani B. Aetukuri or Venkatasubramanian Viswanathan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 15472 kb)

Supplementary movie 1

Supplementary movie 1 (MP4 175 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aetukuri, N., McCloskey, B., García, J. et al. Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li–O2 batteries. Nature Chem 7, 50–56 (2015). https://doi.org/10.1038/nchem.2132

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2132

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing