Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Supramolecular binding and separation of hydrocarbons within a functionalized porous metal–organic framework

Abstract

Supramolecular interactions are fundamental to host–guest binding in many chemical and biological processes. Direct visualization of such supramolecular interactions within host–guest systems is extremely challenging, but crucial to understanding their function. We report a comprehensive study that combines neutron scattering, synchrotron X-ray and neutron diffraction, and computational modelling to define the detailed binding at a molecular level of acetylene, ethylene and ethane within the porous host NOTT-300. This study reveals simultaneous and cooperative hydrogen-bonding, π···π stacking interactions and intermolecular dipole interactions in the binding of acetylene and ethylene to give up to 12 individual weak supramolecular interactions aligned within the host to form an optimal geometry for the selective binding of hydrocarbons. We also report the cooperative binding of a mixture of acetylene and ethylene within the porous host, together with the corresponding breakthrough experiments and analysis of adsorption isotherms of gas mixtures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hydrocarbon adsorption isotherms and selectivity data for NOTT-300, quasi-elastic neutron scattering (QENS) spectra and variation of thermodynamic parameters for hydrocarbon adsorption in NOTT-300.
Figure 4: INS spectra for bare NOTT-300 and NOTT-300 loaded with a C2H2/C2H4 hydrocarbon mixture and views of the adsorption isotherms of the C2H2/C2H4 mixture and the corresponding experimental breakthrough plot.
Figure 3: Views of the structural models for the adsorption of C2H2, C2H4 and C2H6 in NOTT-300.
Figure 2: INS spectra for NOTT-300 as a function of hydrocarbon loadings.
Figure 5: Views of the calculated structural models for NOTT-300 loaded with a C2H2/C2H4 mixture (NOTT-300·2.4C2H2·0.8C2H4).

Similar content being viewed by others

References

  1. Vaidhyanathan, R. et al. Direct observation and quantification of CO2 binding within an amine-functionalized nanoporous solid. Science 330, 650–653 (2010).

    Article  CAS  Google Scholar 

  2. Rabone, J. et al. An adaptable peptide-based porous material. Science 329, 1053–1057 (2010).

    Article  CAS  Google Scholar 

  3. Long, J. R. & Yaghi, O. M. The pervasive chemistry of metal–organic frameworks. Chem. Soc. Rev. 38, 1201–1507 (2009).

    Article  Google Scholar 

  4. Zhou, H. C., Long, J. R. & Yaghi, O. M. Introduction to metal–organic frameworks. Chem. Rev. 112, 673 (2012).

    Article  CAS  Google Scholar 

  5. Davis, M. E. Ordered porous materials for emerging applications. Nature 417, 813–821 (2002).

    Article  CAS  Google Scholar 

  6. Yang, S. et al. A partially interpenetrated metal–organic framework for selective hysteretic sorption of carbon dioxide. Nature Mater. 11, 710–716 (2012).

    Article  CAS  Google Scholar 

  7. Yan, Y. et al. Metal–organic polyhedral frameworks: high H2 adsorption capacities and neutron powder diffraction studies. J. Am. Chem. Soc. 132, 4092–4094 (2010).

    Article  CAS  Google Scholar 

  8. Lin, X. et al. High capacity hydrogen adsorption in Cu(II) tetracarboxylate framework materials: the role of pore size, ligand functionalization, and exposed metal sites. J. Am. Chem. Soc. 131, 2159–2171 (2009).

    Article  CAS  Google Scholar 

  9. Geier, S. J. et al. Selective adsorption of ethylene over ethane and propylene over propane in the metal–organic frameworks M2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Zn). Chem. Sci. 4, 2054–2061 (2013).

    Article  CAS  Google Scholar 

  10. Bloch, E. D. et al. Hydrocarbon separations in a metal–organic framework with open iron(II) coordination sites. Science 335, 1606–1610 (2012).

    Article  CAS  Google Scholar 

  11. Matsuda, R. et al. Highly controlled acetylene accommodation in a metal–organic microporous material. Nature 436, 238–241 (2005).

    Article  CAS  Google Scholar 

  12. Zhang, J. & Chen, X. Optimized acetylene/carbon dioxide sorption in a dynamic porous crystal. J. Am. Chem. Soc. 131, 5516–5521 (2009).

    Article  CAS  Google Scholar 

  13. Rowsell, J. L. C., Spencer, E. C., Eckert, J., Howard, J. A. K. & Yaghi, O. M. Gas adsorption sites in a large-pore metal–organic framework. Science 309, 1350–1354 (2005).

    Article  CAS  Google Scholar 

  14. Spencer, E. C., Howard, J. A. K., McIntyre, G. J., Rowsell, J. L. C. & Yaghi, O. M. Determination of the hydrogen absorption sites in Zn4O(1,4-benzenedicarboxylate) by single crystal neutron diffraction. Chem. Commun. 278–280 (2006).

  15. Yang, S. et al. Selectivity and direct visualization of carbon dioxide and sulfur dioxide in a decorated porous host. Nature Chem. 4, 887–894 (2012).

    Article  CAS  Google Scholar 

  16. He, Y., Xiang, S. & Chen, B. A microporous hydrogen-bonded organic framework for highly selective C2H2/C2H4 separation at ambient temperature. J. Am. Chem. Soc. 133, 14570–14573 (2011).

    Article  CAS  Google Scholar 

  17. Xiang, S-C. et al. Rationally tuned micropores within enantiopure metal–organic frameworks for highly selective separation of acetylene and ethylene. Nature Commun. 2, 204 (2011).

    Article  Google Scholar 

  18. Li, B. et al. Introduction of π-complexation into porous aromatic framework for highly selective adsorption of ethylene over ethane. J. Am. Chem. Soc. 136, 8654–8660 (2014).

    Article  CAS  Google Scholar 

  19. Myers, A. L. & Prausnitz, J. M. Thermodynamics of mixed-gas adsorption. AlChE J. 11, 121–127 (1965).

    Article  CAS  Google Scholar 

  20. He, Y., Krishna, R. & Chen, B. Metal–organic frameworks with potential for energy-efficient adsorptive separation of light hydrocarbons. Energy Environ. Sci. 5, 9107–9120 (2012).

    Article  CAS  Google Scholar 

  21. Anson, A., Wang, Y., Lin, C. C. H., Kuznicki, T. M. & Kuznicki, S. M. Adsorption of ethane and ethylene on modified ETS-10. Chem. Eng. Sci. 63, 4171–4175 (2008).

    Article  CAS  Google Scholar 

  22. Bae, Y-S. et al. High propene/propane selectivity in isostructural metal–organic frameworks with high densities of open metal sites. Angew. Chem. Int. Ed. 51, 1857–1860 (2012).

    Article  CAS  Google Scholar 

  23. Peralta, D. et al. Comparison of the behavior of metal−organic frameworks and zeolites for hydrocarbon separations. J. Am. Chem. Soc. 134, 8115–8126 (2012).

    Article  CAS  Google Scholar 

  24. Ramirez-Cuesta, A. J. aCLIMAX 4.0.1, the new version of the software for analyzing and interpreting INS spectra. Comput. Phys. Commun. 157, 226–238 (2004).

    Article  CAS  Google Scholar 

  25. Clark, S. J. et al. First principles methods using CASTEP. Z. Kristall. 220, 567–570 (2005).

    CAS  Google Scholar 

  26. Refson, K., Tulip, P. R. & Clark, S. J. Variational density-functional perturbation theory for dielectrics and lattice dynamics. Phys. Rev. B 73, 155114 (2006).

    Article  Google Scholar 

  27. Boscoboinik, J. A. et al. Interaction of probe molecules with bridging hydroxyls of two-dimensional zeolites: a surface science approach. J. Phys. Chem. C 117, 13547–13556 (2013).

    Article  CAS  Google Scholar 

  28. Jobic, H. & Theodorou, D. N. Quasi-elastic neutron scattering and molecular dynamics simulation as complementary techniques for studying diffusion in zeolites. Micropor. Mesopor. Mater. 102, 21–50 (2007).

    Article  CAS  Google Scholar 

  29. Rives, S. et al. Diffusion of xylene isomers in the MIL-47(V) MOF material: a synergic combination of computational and experimental tools. J. Phys. Chem. C 117, 6293–6302 (2013).

    Article  CAS  Google Scholar 

  30. Salles, F. et al. Diffusion of binary CO2/CH4 mixtures in the MIL-47(V) and MIL-53(Cr) metal–organic framework type solids: a combination of neutron scattering measurements and molecular dynamics simulations. J. Phys. Chem. C 117, 11275–11284 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S.Y. acknowledges receipt of a Nottingham Research Fellowship and a Leverhulme Trust Early Career Research Fellowship, and M.S. the receipt of a European Research Council Advanced Grant and an Engineering and Physical Sciences Research Council Programme Grant. We are especially grateful to STFC and the ISIS Neutron Facility for access to Beamlines TOSCA, WISH, IRIS and the SCARF supercomputer resources, and to Diamond Light Source for access to Beamline I11. We thank C. Goodway and M. Kibble of the user support group at ISIS and J. Potter at Diamond for the technical help with the beamlines. We also thank J. Ke for helpful discussions on the implementation of IAST. This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC05-00OR22725.

Author information

Authors and Affiliations

Authors

Contributions

S.Y. and R.N. carried out syntheses, characterization of MOF samples, measurements and analysis of adsorption isotherms. S.Y., S.K.C. and C.C.T. collected and analysed the synchrotron X-ray powder diffraction data. S.Y., A.J.R-C., R.N., V.G-S., P.M., S.K.C. and S.I.C. carried out the collection, analysis, refinement and DFT modelling of neutron-scattering data. S.Y. and M.S. provided the overall direction and supervision of the project and prepared the manuscript.

Corresponding authors

Correspondence to Sihai Yang or Martin Schröder.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 17989 kb)

Supplementary information

Crystallographic data for compound NOTT-300·4C2H2. (CIF 1 kb)

Supplementary information

Crystallographic data for compound NOTT-300·2.5C2H4. (CIF 2 kb)

Supplementary information

Crystallographic data for compound NOTT-300·2.7C2D2. (CIF 2 kb)

Supplementary information

Crystallographic data for compound NOTT-300·1.8C2D4. (CIF 2 kb)

Supplementary information

Crystallographic data for compound NOTT-300·1.3C2D6. (CIF 2 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Ramirez-Cuesta, A., Newby, R. et al. Supramolecular binding and separation of hydrocarbons within a functionalized porous metal–organic framework. Nature Chem 7, 121–129 (2015). https://doi.org/10.1038/nchem.2114

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2114

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing