Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pseudopterosin synthesis from a chiral cross-conjugated hydrocarbon through a series of cycloadditions

Abstract

The pseudopterosins are a family of diterpene marine natural products, which, by virtue of their interesting anti-inflammatory and analgesic properties, have attracted the attentions of many synthetic chemists. The most efficient syntheses reported to date are 14 and 20 steps in the longest linear sequence for chiral pool and enantioselective approaches, respectively, and all start with precursors that are easily mapped onto the natural product structure. Here, we describe an unconventional approach in which a chiral cross-conjugated hydrocarbon is used as the starting material for a series of three cycloadditions. Our approach has led to a significant reduction in the step count required to access these interesting natural products (10 steps chiral pool and 11 steps enantioselective). Furthermore it demonstrates that cross-conjugated hydrocarbons, erroneously considered by many to be too unstable and difficult to handle, are viable precursors for natural product synthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strategic bond disconnections pursued in this study.
Figure 2: Two synthetic approaches to enantioenriched substituted 1,1-divinylallene 6.
Figure 3: Total synthesis of pseudopterosin (–)-G–J aglycone employing a diene-transmissive triple DA cycloaddition strategy.

Similar content being viewed by others

References

  1. Berrué, F., McCulloch, M. W. B. & Kerr, R. G. Marine diterpene glycosides. Bioorg. Med. Chem. 19, 6702–6719 (2011).

    Article  Google Scholar 

  2. Rodríguez, I. I. et al. New pseudopterosin and seco-pseudopterosin diterpene glycosides from two Colombian isolates of Pseudopterogorgia elisabethae and their diverse biological activities. J. Nat. Prod. 67, 1672–1680 (2004).

    Article  Google Scholar 

  3. Look, S. A., Fenical, W., Jacobs, R. S. & Clardy, J. The pseudopterosins: anti-inflammatory and analgesic natural products from the sea whip Pseudopterogorgia elisabethae. Proc. Natl Acad. Sci. USA 83, 6238–6240 (1986).

    Article  CAS  Google Scholar 

  4. Look, S. A., Fenical, W., Matsumoto, G. K. & Clardy, J. The pseudopterosins: a new class of anti-inflammatory and analgesic diterpene pentosides from the marine sea whip Pseudopterogorgia elisabethae (Octocorallia). J. Org. Chem. 51, 5140–5145 (1986).

    Article  CAS  Google Scholar 

  5. Broka, C. A., Chan, S. & Peterson, B. Total synthesis of (–)-pseudopterosin A. J. Org. Chem. 53, 1584–1586 (1988).

    Article  CAS  Google Scholar 

  6. Corey, E. J. & Carpino, P. Enantiospecific total synthesis of pseudopterosins A and E. J. Am. Chem. Soc. 111, 5472–5474 (1989).

    Article  CAS  Google Scholar 

  7. Corey, E. J. & Carpino, P. A new enantiospecific route to the pseudopterosins. Tetrahedron Lett. 31, 3857–3858 (1990).

    Article  CAS  Google Scholar 

  8. Ganguly, A. K., McCombie, S. W., Cox, B., Lin, S. & McPhail, A. T. Stereospecific synthesis of the aglycone of pseudopterosin E. Pure Appl. Chem. 62, 1289–1291 (1990).

    Article  CAS  Google Scholar 

  9. McCombie, S. W., Cox, B., Lin, S-I., Ganguly, A. K. & McPhail, A. T. Controlling benzylic functionality and stereochemistry: 1. Synthesis of the secopseudopterosin aglycone. Tetrahedron Lett. 32, 2083–2086 (1991).

    Article  CAS  Google Scholar 

  10. McCombie, S. W., Cox, B. & Ganguly, A. K. Controlling benzylic functionality and stereochemistry: 2. Synthesis of the pseudopterosin aglycone. Tetrahedron Lett. 32, 2087–2090 (1991).

    Article  CAS  Google Scholar 

  11. Buszek, K. R. & Bixby, D. L. Total synthesis of pseudopterosin A and E aglycon. Tetrahedron Lett. 36, 9129–9132 (1995).

    Article  CAS  Google Scholar 

  12. Majdalani, A. & Schmalz, H-G. Enantioselective synthesis of the aglycones of pseudopterosin and seco-pseudopterosin via a common synthetic intermediate. Synlett 1303–1305 (1997).

  13. Corey, E. J. & Lazerwith, S. E. A direct and efficient stereocontrolled synthetic route to the pseudopterosins, potent marine anti-inflammatory agents. J. Am. Chem. Soc. 120, 12777–12782 (1998).

    Article  CAS  Google Scholar 

  14. Lazerwith, S. E., Johnson, T. W. & Corey, E. J. Syntheses and stereochemical revision of pseudopterosin G–J aglycon and helioporin E. Org. Lett. 2, 2389–2392 (2000).

    Article  CAS  Google Scholar 

  15. Kocienski, P. J., Pontiroli, A. & Qun, L. Enantiospecific syntheses of pseudopterosin aglycones. Part 2. Synthesis of pseudopterosin K–L aglycone and pseudopterosin A–F aglycone via a B → BA → BAC annulation strategy. J. Chem. Soc. Perkin Trans 1 2356–2366 (2001).

  16. Harrowven, D. C. & Tyte, M. J. Total synthesis of (±)-pseudopterosin A–F and K–L aglycone. Tetrahedron Lett. 45, 2089–2091 (2004).

    Article  CAS  Google Scholar 

  17. Mans, D. J., Cox, G. A. & RajanBabu, T. V. Ethylene in organic synthesis. Repetitive hydrovinylation of alkenes for highly enantioselective syntheses of pseudopterosins. J. Am. Chem. Soc. 133, 5776–5779 (2011).

    Article  CAS  Google Scholar 

  18. Cooksey, J. P., Kocieński, P. J., Schmidt, A. W., Snaddon, T. N. & Kilner, C. A. A synthesis of the pseudopterosin A–F aglycone. Synthesis 44, 2779–2785 (2012).

    Article  CAS  Google Scholar 

  19. Corey, E. J. & Cheng, X-M. The Logic of Chemical Synthesis (Wiley, 1995).

  20. Cergol, K. M. et al. 1,1-Divinylallene. Angew. Chem. Int. Ed. 50, 10425–10428 (2011).

    Article  CAS  Google Scholar 

  21. Colvin, E. W. & Hamill, B. J. One-step conversion of carbonyl compounds into acetylenes. J. Chem. Soc. Chem. Commun. 151–152 (1973).

  22. Colvin, E. W. & Hamill, B. J. A simple procedure for the elaboration of carbonyl compounds into homologous alkynes. J. Chem. Soc. Perkin Trans. 1 869–874 (1977).

  23. Hansen, E. C. & Lee, D. Efficient and Z-selective cross-metathesis of conjugated enynes. Org. Lett. 6, 2035–2038 (2004).

    Article  CAS  Google Scholar 

  24. Matsumura, K., Hashiguchi, S., Ikariya, T. & Noyori, R. Asymmetric transfer hydrogenation of α,β-acetylenic ketones. J. Am. Chem. Soc. 119, 8738–8739 (1997).

    Article  CAS  Google Scholar 

  25. Nicolaou, K. C., Snyder, S. A., Montagnon, T. & Vassilikogiannakis, G. The Diels–Alder reaction in total synthesis. Angew. Chem. Int. Ed. 41, 1668–1698 (2002).

    Article  CAS  Google Scholar 

  26. Tsuji, J. & Ohno, K. Organic syntheses by means of noble metal compounds XXI. Decarbonylation of aldehydes using rhodium complex. Tetrahedron Lett. 6, 3969–3971 (1965).

    Article  Google Scholar 

  27. Schröder, D. et al. Ethylenedione: an intrinsically short-lived molecule. Chem. Eur. J. 4, 2550–2557 (1998).

    Article  Google Scholar 

  28. Adam, W., Mąkosza, M., Saha-Möller, C. R. & Zhao, C-G. A mild and efficient Nef reaction for the conversion of nitro to carbonyl group by dimethyldioxirane (DMD) oxidation of nitronate anions. Synlett 1335–1336 (1998).

Download references

Acknowledgements

The authors thank R. Kerr and F. Berrué for providing authentic samples of the pseudopterosins, H-G. Schmalz for providing a copy of the PhD thesis of A. Majdalani, S. M. (M.) Tan and E. Lindeboom for preliminary experiments, and A. Herlt for assistance with HPLC. M.N.P-R. acknowledges that this research was undertaken with the assistance of resources provided at the NCI National Facility through the National Computational Merit Allocation Scheme supported by the Australian Government. This work was supported by the Australian Research Council.

Author information

Authors and Affiliations

Authors

Contributions

C.G.N., S.L.D., A.L.L. and M.S.S. conceived, designed and carried out the synthetic experiments. A.C.W. performed the crystallographic studies. M.N.P-R. designed and carried out the computational study. All authors discussed and co-wrote the manuscript.

Corresponding authors

Correspondence to Michael N. Paddon-Row or Michael S. Sherburn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2652 kb)

Supplementary information

Crystallographic data for compound 20 (CIF 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Newton, C., Drew, S., Lawrence, A. et al. Pseudopterosin synthesis from a chiral cross-conjugated hydrocarbon through a series of cycloadditions. Nature Chem 7, 82–86 (2015). https://doi.org/10.1038/nchem.2112

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2112

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing