Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Revealing the macromolecular targets of complex natural products

This article has been updated

Abstract

Natural products have long been a source of useful biological activity for the development of new drugs. Their macromolecular targets are, however, largely unknown, which hampers rational drug design and optimization. Here we present the development and experimental validation of a computational method for the discovery of such targets. The technique does not require three-dimensional target models and may be applied to structurally complex natural products. The algorithm dissects the natural products into fragments and infers potential pharmacological targets by comparing the fragments to synthetic reference drugs with known targets. We demonstrate that this approach results in confident predictions. In a prospective validation, we show that fragments of the potent antitumour agent archazolid A, a macrolide from the myxobacterium Archangium gephyra, contain relevant information regarding its polypharmacology. Biochemical and biophysical evaluation confirmed the predictions. The results obtained corroborate the practical applicability of the computational approach to natural product ‘de-orphaning’.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Comparison of the distributions of natural products and drugs in chemical space.
Figure 2: Comparison of the molecular structures in the compound libraries.
Figure 3: Frequently predicted targets of NPDFs.
Figure 4: Virtual fragmentation and pharmacophore alignment of ArcA.
Figure 5: Biochemical analysis of the effects of ArcA on the predicted targets.

Change history

  • 05 November 2014

    In the version of this Article originally published online, the units of concentration on the x axis in Fig. 5e should have read 'μM'. This error was introduced during production and has been corrected in all versions of the Article.

References

  1. 1

    Koehn, F. E. & Carter, G. T. The evolving role of natural products in drug discovery. Nature Rev. Drug Discov. 4, 206–220 (2005).

    CAS  Article  Google Scholar 

  2. 2

    Harvey, A. L. Natural products in drug discovery. Drug Discov. Today 13, 894–901 (2008).

    CAS  Article  Google Scholar 

  3. 3

    Wetzel, S. et al. Interactive exploration of chemical space with Scaffold Hunter. Nature Chem. Biol. 5, 581–583 (2009).

    CAS  Article  Google Scholar 

  4. 4

    Larsson, J., Gottfries, J., Muresan, S. & Backlund, A. ChemGPS-NP: tuned for navigation in biologically relevant chemical space. J. Nat. Prod. 70, 789–794 (2007).

    CAS  Article  Google Scholar 

  5. 5

    Rosén, J., Gottfries, J., Muresan, S., Backlund, A. & Oprea, T. I. Novel chemical space exploration via natural products. J. Med. Chem. 52, 1953–1962 (2009).

    Article  Google Scholar 

  6. 6

    Bon, R. S. & Waldmann, H. Bioactivity-guided navigation of chemical space. Acc. Chem. Res. 43, 1103–1114 (2010).

    CAS  Article  Google Scholar 

  7. 7

    Renner, S. et al. Bioactivity-guided mapping and navigation of chemical space. Nature Chem. Biol. 5, 585–592 (2009).

    CAS  Article  Google Scholar 

  8. 8

    Huigens, R. W. III et al. A ring-distortion strategy to construct stereochemically complex and structurally diverse compounds from natural products. Nature Chem. 5, 195–202 (2013).

    CAS  Article  Google Scholar 

  9. 9

    Lachance, H., Wetzel, S., Kumar, K. & Waldmann, H. Charting, navigating, and populating natural product chemical space for drug discovery. J. Med. Chem. 55, 5989–6001 (2012).

    CAS  Article  Google Scholar 

  10. 10

    Rollinger, J. M., Stuppner, H., & Langer, T. in Natural Compounds as Drugs Vol. 1 (eds Petersen, F. & Amstutz, R.) 211–249 (Birkhäuser, 2008).

    Book  Google Scholar 

  11. 11

    Hopkins, A. L. Drug discovery: predicting promiscuity. Nature 462, 167–168 (2009).

    CAS  Article  Google Scholar 

  12. 12

    Rollinger, J. M. Accessing target information by virtual parallel screening – the impact on natural product research. Phytochem. Lett. 2, 53–58 (2009).

    CAS  Article  Google Scholar 

  13. 13

    Lagunin, A., Filimonov, D. & Poroikov, V. Multi-targeted natural products evaluation based on biological activity prediction with PASS. Curr. Pharm. Des. 16, 1703–1717 (2010).

    CAS  Article  Google Scholar 

  14. 14

    Over, B. et al. Natural-product-derived fragments for fragment-based ligand discovery. Nature Chem. 5, 21–28 (2013).

    CAS  Article  Google Scholar 

  15. 15

    Schmid, F., Jessen, H. J., Burcha, P. & Gademann, K. Truncated militarinone fragments identified by total chemical synthesis induce neurite outgrowth. Med. Chem. Commun. 4, 135–139 (2013).

    CAS  Article  Google Scholar 

  16. 16

    Schneider, P. & Schneider, G. Collection of bioactive reference compounds for focused library design. QSAR Comb. Sci. 22, 713–718 (2003).

    CAS  Article  Google Scholar 

  17. 17

    Schneider, G., Neidhart, W., Giller, T. & Schmid, G. ‘Scaffold-hopping’ by topological pharmacophore search: a contribution to virtual screening. Angew. Chem. Int. Ed. 38, 2894–2896 (1999).

    CAS  Article  Google Scholar 

  18. 18

    Reutlinger, M. et al. Chemically advanced template search (CATS) for scaffold-hopping and prospective target prediction for ‘orphan’ molecules. Mol. Inf. 32, 133–138 (2013).

    CAS  Article  Google Scholar 

  19. 19

    Schneider, P., Tanrikulu, Y. & Schneider G. Self-organizing maps in drug discovery: compound library design, scaffold-hopping, repurposing. Curr. Med. Chem. 16, 258–266 (2009).

    CAS  Article  Google Scholar 

  20. 20

    Grabowski, K., Baringhaus, K. H. & Schneider, G. Scaffold diversity of natural products: inspiration for combinatorial library design. Nat. Prod. Rep. 25, 892–904 (2008).

    CAS  Article  Google Scholar 

  21. 21

    CRC Chemical Database Dictionary of Natural Products. Available at http://dnp.chemnetbase.com/

  22. 22

    Lee, M-L. & Schneider, G. Scaffold architecture and pharmacophoric properties of natural products and trade drugs: application in the design of natural product-based combinatorial libraries. J. Comb. Chem. 3, 284–289 (2001).

    CAS  Article  Google Scholar 

  23. 23

    Reker, D., Rodrigues, T., Schneider, P. & Schneider, G. Identifying the macromolecular targets of de novo designed chemical entities through self-organizing map consensus. Proc. Natl Acad. Sci. USA 111, 4067–4072 (2014).

    CAS  Article  Google Scholar 

  24. 24

    Faller, B., Ottaviani, G., Ertl, P., Berellini, G. & Collis, A. Evolution of the physicochemical properties of marketed drugs: can history foretell the future? Drug Discov. Today 16, 976–984 (2011).

    CAS  Article  Google Scholar 

  25. 25

    López-Vallejo, F., Giulianotti, M. A., Houghten, R. A. & Medina-Franco, J. L. Expanding the medicinally relevant chemical space with compound libraries. Drug Discov. Today 17, 718–726 (2012).

    Article  Google Scholar 

  26. 26

    Lewell, X. Q., Judd, D. B., Watson, S. P. & Hann, M. M. RECAP – retrosynthetic combinatorial analysis procedure: a powerful new technique for identifying privileged molecular fragments with useful applications in combinatorial chemistry. J. Chem. Inf. Comput. Sci. 38, 511–522 (1998).

    CAS  Article  Google Scholar 

  27. 27

    Huss, M. & Wieczorek, H. Inhibitors of V-ATPases: old and new players. J. Exp. Biol. 212, 341–346 (2009).

    CAS  Article  Google Scholar 

  28. 28

    von Schwarzenberg, K. et al. Mode of cell death induction by pharmacological vacuolar H+-ATPase (V-ATPase) inhibition. J. Biol. Chem. 288, 1385–1396 (2013).

    CAS  Article  Google Scholar 

  29. 29

    Wiedmann, R. M. et al. The V-ATPase-inhibitor archazolid abrogates tumor metastasis via inhibition of endocytic activation of the Rho-GTPase Rac1. Cancer Res. 72, 5976–5987 (2012).

    CAS  Article  Google Scholar 

  30. 30

    Huss, M. et al. Archazolid and apicularen: novel specific V-ATPase inhibitors. BMC Biochem. 6, 13 (2005).

    Article  Google Scholar 

  31. 31

    Horstmann, N. et al. Archazolid A-15-O-β-D-glucopyranoside and iso-archazolid B: Potent V-ATPase inhibitory polyketides from the myxobacteria Cystobacter violaceus and Archangium gephyra. J. Nat. Prod. 74, 1100–1105 (2011).

    CAS  Article  Google Scholar 

  32. 32

    Dreisigacker, S. et al. Understanding the inhibitory effect of highly potent and selective archazolides binding to the vacuolar ATPase. J. Chem. Inf. Model. 52, 2265–2272 (2012).

    CAS  Article  Google Scholar 

  33. 33

    Rizzo, T. R., Pudlo, N., Farrell, L. & Leaver, A. Specificity of arachidonic acid-induced inhibition of growth and activation of c-jun kinases and p38 mitogen-activated protein kinase in hematopoietic cells. Prostag. Leukotr. Ess. 66, 31–40 (2002).

    CAS  Article  Google Scholar 

  34. 34

    Viscardi, R. M. & Max, S. R. Unsaturated fatty acid modulation of glucocorticoid receptor binding in L2 cells. Steroids 58, 357–361 (1993).

    CAS  Article  Google Scholar 

  35. 35

    Vecchio, A. J., Orlando, B. J., Nandagiri, R. & Malkowski, M. G. Investigating substrate promiscuity in cyclooxygenase-2: the role of Arg-120 and residues lining the hydrophobic groove. J. Biol. Chem. 287, 24619–24630 (2012).

    CAS  Article  Google Scholar 

  36. 36

    Kainuma, M., Makishima, M., Hashimoto, Y. & Miyachi, H. Design, synthesis, and evaluation of non-steroidal farnesoid X receptor (FXR) antagonist. Bioorg. Med. Chem. 15, 2587–2600 (2007).

    CAS  Article  Google Scholar 

  37. 37

    Maloney, P. R. et al. Identification of a chemical tool for the orphan nuclear receptor FXR. J. Med. Chem. 43, 2971–2974 (2000).

    CAS  Article  Google Scholar 

  38. 38

    Yu, J. et al. Lithocholic acid decreases expression of bile salt export pump through farnesoid X receptor antagonist activity. J. Biol. Chem. 277, 31441–31447 (2002).

    CAS  Article  Google Scholar 

  39. 39

    Pellicciari, R. et al. 6α-ethyl-chenodeoxycholic acid (6-ECDCA), a potent and selective FXR agonist endowed with anticholestatic activity. J. Med. Chem. 43, 3569–3572 (2002).

    Article  Google Scholar 

  40. 40

    Kliewer, S. A. et al. Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and gamma. Proc. Natl Acad. Sci. USA 94, 4318–4323 (1997).

    CAS  Article  Google Scholar 

  41. 41

    Forman, B. M. et al. 15-Deoxy-Δ12,14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell 83, 803–812 (1995).

    CAS  Article  Google Scholar 

  42. 42

    Fischer, A. S. et al. 5-Lipoxygenase inhibitors induce potent anti-proliferative and cytotoxic effects in human tumour cells independently of suppression of 5-lipoxygenase activity. Br. J. Pharmacol. 161, 936–949 (2010).

    CAS  Article  Google Scholar 

  43. 43

    Li, Y. et al. MK886 inhibits the proliferation of HL-60 leukemia cells by suppressing the expression of mPGES-1 and reducing prostaglandin E2 synthesis. Int. J. Hematol. 94, 472–478 (2011).

    CAS  Article  Google Scholar 

  44. 44

    Fujino, T. et al. Critical role of farnesoid X receptor for hepatocellular carcinoma cell proliferation. J. Biochem. 152, 577–586 (2012).

    CAS  Article  Google Scholar 

  45. 45

    Lea, M. A., Sura, M. & Desbordes, C. Inhibition of cell proliferation by potential peroxisome proliferator-activated receptor (PPAR) gamma agonists and antagonists. Anticancer Res. 24, 2765–2771 (2004).

    CAS  PubMed  Google Scholar 

  46. 46

    Tran, A. B. et al. Synthesis and activity of the archazolid western hemisphere. Org. Biomol. Chem. 9, 7671–7674 (2011).

    CAS  Article  Google Scholar 

  47. 47

    Berthold, M. R. et al. in Studies in Classification, Data Analysis, and Knowledge Organization (eds Preisach C. et al.) 319–326 (Springer, 2007).

    Google Scholar 

  48. 48

    Kohonen, T. Self-Organizing Maps (Springer, 2001).

    Book  Google Scholar 

Download references

Acknowledgements

We thank the Chemical Computing Group for an MOE research license, Inte:Ligand GmbH for the LigandScout software license and inSili.com LLC for access to the COBRA database and the MOLMAP software. This study was financially supported by the OPO Foundation Zürich and the Deutsche Forschungsgemeinschaft (DFG, FOR1406).

Author information

Affiliations

Authors

Contributions

D.R., A.M.P., M.R., P.S., T.R. and G.S. developed the target prediction tool and performed the computational experiments. B.M., A.K., C.L., M.G., H.S., M.S-Z. and O.W. conceived and performed the biochemical experiments. H.S. and R.M. contributed ArcA. D.R. and G.S. conceived the investigation and prepared the manuscript, with feedback and contributions from the other authors.

Corresponding author

Correspondence to Gisbert Schneider.

Ethics declarations

Competing interests

P.S. and G.S. are cofounders of inSili.com LLC, Zürich, and are consultants in the pharmaceutical industry. All the other authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2004 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Reker, D., Perna, A., Rodrigues, T. et al. Revealing the macromolecular targets of complex natural products. Nature Chem 6, 1072–1078 (2014). https://doi.org/10.1038/nchem.2095

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing