Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Atom-efficient regioselective 1,2-dearomatization of functionalized pyridines by an earth-abundant organolanthanide catalyst

Abstract

Developing earth-abundant, non-platinum metal catalysts for high-value chemical transformations is a critical challenge to contemporary chemical synthesis. Dearomatization of pyridine derivatives is an important transformation to access a wide range of valuable nitrogenous natural products, pharmaceuticals and materials. Here, we report an efficient 1,2-regioselective organolanthanide-catalysed pyridine dearomatization process using pinacolborane, which is compatible with a broad range of pyridines and functional groups and employs equimolar reagent stoichiometry. Regarding the mechanism, derivation of the rate law from NMR spectroscopic and kinetic measurements suggests first order in catalyst concentration, fractional order in pyridine concentration and inverse first order in pinacolborane concentration, with C=N insertion into the La–H bond as turnover-determining. An energetic span analysis affords a more detailed understanding of experimental activity trends and the unusual kinetic behaviour, and proposes the catalyst ‘resting’ state and potential deactivation pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Importance of saturated six-membered nitrogenous heterocycles and recent progress toward their synthesis.
Figure 2: Plausible elementary reaction sequence for catalytic pyridine dearomatization.
Figure 3: DFT-derived energetics of the catalytic pyridine dearomatization reaction coordinate.
Figure 4: Catalytic pyridine dearomatization mechanistic summary.
Figure 5: DFT-computed versus experimental organolanthanide-catalysed TOFs for functionalized pyridines.

Similar content being viewed by others

References

  1. Bullock, R. M. Catalysis Without Precious Metals (Wiley, 2010).

    Book  Google Scholar 

  2. Bullock, R. M. Abundant metals give precious hydrogenation performance. Science 342, 1054–1055 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. National Research Council The Role of the Chemical Sciences in Finding Alternatives to Critical Resources: A Workshop Summary (The National Academies Press, 2012).

  4. Eijsbouts, S., Anderson, G. H., Bergwerff, J. A. & Jacobi, S. Economic and technical impacts of replacing Co and Ni promotion in hydrotreating catalysts. Appl. Catal. A 458, 169–182 (2013).

    Article  CAS  Google Scholar 

  5. Wender, P. et al. What lies ahead. Nature 469, 23–25 (2011).

    Article  CAS  Google Scholar 

  6. Harrison, K. N. & Marks, T. J. Organolanthanide-catalyzed hydroboration of olefins. J. Am. Chem. Soc. 114, 9220–9221 (1992).

    Article  CAS  Google Scholar 

  7. Hong, S. & Marks, T. J. Organolanthanide-catalyzed hydroamination. Acc. Chem. Res. 37, 673–686 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Fu, P-F., Brard, L., Li, Y. & Marks, T. J. Regioselection and enantioselection in organolanthanide-catalyzed olefin hydrosilylation. A kinetic and mechanistic study. J. Am. Chem. Soc. 117, 7157–7168 (1995).

    Article  CAS  Google Scholar 

  9. Obora, Y., Ohta, T., Stern, C. L. & Marks, T. J. Organolanthanide-catalyzed imine hydrogenation. Scope, selectivity, mechanistic observations, and unusual byproducts. J. Am. Chem. Soc. 119, 3745–3755 (1997).

    Article  CAS  Google Scholar 

  10. Pape, A. R., Kaliappan, K. P. & Kündig, E. P. Transition-metal-mediated dearomatization reactions. Chem. Rev. 100, 2917–2940 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Roche, S. P. & Porco, J. A. Dearomatization strategies in the synthesis of complex natural products. Angew. Chem. Int. Ed. 50, 4068–4093 (2011).

    Article  CAS  Google Scholar 

  12. Stout, D. M. & Meyers, A. I. Recent advances in the chemistry of dihydropyridines. Chem. Rev. 82, 223–243 (1982).

    Article  CAS  Google Scholar 

  13. Edraki, N., Mehdipour, A. R., Khoshneviszadeh, M. & Miri, R. Dihydropyridines: evaluation of their current and future pharmacological applications. Drug Discov. Today 14, 1058–1066 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Lavilla, R. Recent developments in the chemistry of dihydropyridines. J. Chem. Soc. Perkin Trans. 1, 1141–1156 (2002).

    Article  CAS  Google Scholar 

  15. Wender, P. A., Schaus, J. M. & White, A. W. General methodology for cis-hydroisoquinoline synthesis: synthesis of reserpine. J. Am. Chem. Soc. 102, 6157–6159 (1980).

    Article  CAS  Google Scholar 

  16. Mizoguchi, H., Oikawa, H. & Oguri, H. Biogenetically inspired synthesis and skeletal diversification of indole alkaloids. Nature Chem. 6, 57–64 (2014).

    Article  CAS  Google Scholar 

  17. Duttwyler, S. et al. A. Regio- and stereoselective 1,2-dihydropyridine alkylation/addition sequence for the synthesis of piperidines with quaternary centers. Angew. Chem. Int. Ed. 53, 3877–3880 (2014).

    Article  CAS  Google Scholar 

  18. Satoh, N., Akiba, T., Yokoshima, S. & Fukuyama, T. A practical synthesis of (–)-oseltamivir. Angew. Chem. Int. Ed. 46, 5734–5736 (2007).

    Article  CAS  Google Scholar 

  19. Bull, J. A., Mousseau, J. J., Pelletier, G. & Charette, A. B. Synthesis of pyridine and dihydropyridine derivatives by regio- and stereoselective addition to N-activated pyridines. Chem. Rev. 112, 2642–2713 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Arrowsmith, M., Hill, M. S., Hadlington, T., Kociok-Köhn, G. & Weetman, C. Magnesium-catalyzed hydroboration of pyridines. Organometallics 30, 5556–5559 (2011).

    Article  CAS  Google Scholar 

  21. Oshima, K., Ohmura, T. & Suginome, M. Regioselective synthesis of 1,2-dihydropyridines by rhodium-catalyzed hydroboration of pyridines. J. Am. Chem. Soc. 134, 3699–3702 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Osakada, K. 1,4-Hydrosilylation of pyridine by ruthenium catalyst: a new reaction and mechanism. Angew. Chem. Int. Ed. 50, 3845–3846 (2011).

    Article  CAS  Google Scholar 

  23. Hao, L. et al. Homogeneous catalytic hydrosilylation of pyridines. Angew. Chem. Int. Ed. 37, 3126–3129 (1998).

    Article  CAS  Google Scholar 

  24. Gutsulyak, D. V., van der Est, A. & Nikonov, G. I. Facile catalytic hydrosilylation of pyridines. Angew. Chem. Int. Ed. 50, 1384–1387 (2011).

    Article  CAS  Google Scholar 

  25. Lee, S-H., Gutsulyak, D. V. & Nikonov, G. I. Chemo- and regioselective catalytic reduction of N-heterocycles by silane. Organometallics 32, 4457–4464 (2013).

    Article  CAS  Google Scholar 

  26. Jeske, G. et al. Highly reactive organolanthanides. Systematic routes to and olefin chemistry of early and late bis(pentamethylcyclopentadienyl) 4f hydrocarbyl and hydride complexes. J. Am. Chem. Soc. 107, 8091–8103 (1985).

    Article  CAS  Google Scholar 

  27. Weiss, C. J. & Marks, T. J. Organo-f-element catalysts for efficient and highly selective hydroalkoxylation and hydrothiolation. Dalton Trans. 39, 6576–6588 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Humphries, M. Rare Earth Elements: The Global Supply Chain (Congressional Research Service, 2013).

    Google Scholar 

  29. Gountchev, T. I. & Tilley, T. D. Yttrium complexes of the chelating, C2-symmetric, bis(silylamido)biphenyl ligand [DADMB]2− (={[6,6′-Me2-(C6H3)2](2,2′-NSiMe2tBu)2}2−). Organometallics 18, 2896–2905 (1999).

    Article  CAS  Google Scholar 

  30. Reznichenko, A. L. & Hultzsch, K. C. Early transition metal (group 3–5, lanthanides and actinides) and main group metal (group 1, 2, and 13) catalyzed hydroamination. Top. Organomet. Chem. 43, 51–114 (2013).

    Article  CAS  Google Scholar 

  31. Oshima, K., Ohmura, T. & Suginome, M. Dearomatizing conversion of pyrazines to 1,4-dihydropyrazine derivatives via transition-metal-free diboration, silaboration, and hydroboration. Chem. Commun. 48, 8571–8573 (2012).

    Article  CAS  Google Scholar 

  32. Ringelberg, S. N. Bond Activation and Catalysis with Organolanthanides Ch. 5, Dissertation, Univ. Library Groningen (2001).

    Google Scholar 

  33. Barnea, E., Andrea, T., Kapon, M. & Eisen, M. S. Formation of inclusion organoactinide complexes with boron-containing macrocycles. J. Am. Chem. Soc. 126, 5066–5067 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Kratsch, J. et al. Chiral rare earth borohydride complexes supported by amidinate ligands: synthesis, structure, and catalytic activity in the ring-opening polymerization of rac-lactide. Organometallics 32, 1230–1238 (2013).

    Article  CAS  Google Scholar 

  35. Evans, W. J., Perotti, J. M. & Ziller, J. W. Trialkylboron/lanthanide metallocene hydride chemistry: polydentate bridging of (HBEt3) to lanthanum. Inorg. Chem. 44, 5820–5825 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Schaedle, C., Meermann, C., Törnroos, K. W. & Anwander, R. Rare-earth metal phenyl(trimethylsilyl)amide complexes. Eur. J. Inorg. Chem. 2841–2852 (2010).

  37. Männig, D. & Nöth, H. Metal tetrahydridoborates and tetrahydridoboratometallates: XIII. New and convenient syntheses of dicyclopentadienylzirconium tetrahydridoborate. J. Organomet. Chem. 275, 169–171 (1984).

    Article  Google Scholar 

  38. Sevov, C. S., Zhou, J. & Hartwig, J. F. Iridium-catalyzed intermolecular hydroamination of unactivated aliphatic alkenes with amides and sulfonamides. J. Am. Chem. Soc. 134, 11960–11963 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Muhoro, C. N., He, X. & Hartwig, J. F. Titanocene borane σ complexes. J. Am. Chem. Soc. 121, 5033–5046 (1999).

    Article  CAS  Google Scholar 

  40. Amin, S. B. & Marks, T. J. Versatile pathways for in situ polyolefin functionalization with heteroatoms: catalytic chain transfer. Angew. Chem. Int. Ed. 47, 2006–2025 (2008).

    Article  CAS  Google Scholar 

  41. Kozuch, S. A refinement of everyday thinking: the energetic span model for kinetic assessment of catalytic cycles. WIREs Comput. Mol. Sci. 2, 795–815 (2012).

    Article  CAS  Google Scholar 

  42. Kozuch, S. & Shaik. S. How to conceptualize catalytic cycles? The energetic span model. Acc. Chem. Res. 44, 101–110 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Wobser, S. D., Stephenson, C. J., Delferro, M. & Marks, T. J. Carbostannolysis mediated by bis(pentamethylcyclopentadienyl)lanthanide catalysts. Utility in accessing organotin synthons. Organometallics 32, 1317–1327 (2013).

    Article  CAS  Google Scholar 

  44. Perrin, L., Werkema, E. L., Eisenstein, O. & Andersen, R. A. Two [1,2,4-(Me3C)3C5H2]2CeH molecules are involved in hydrogenation of pyridine to piperidine as shown by experiments and computations. Inorg. Chem. 53, 6361–6373 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. McSkimming, A. & Colbran, S. B. The coordination chemistry of organo-hydride donors: new prospects for efficient multi-electron reduction. Chem. Soc. Rev. 42, 5439–5488 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Diaconescu, P. L. Reactions of aromatic N-heterocycles with d0fn-metal alkyl complexes supported by chelating diamide ligands. Acc. Chem. Res. 43, 1352–1363 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Jantunen, K. C., Scott, B. L., Hay, P. J., Gordon, J. C. & Kiplinger, J. L. Dearomatization and functionalization of terpyridine by lutetium(III) alkyl complexes. J. Am. Chem. Soc. 128, 6322–6323 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Edelmann, F. T. Lanthanides and actinides: annual survey of their organometallic chemistry covering the year 2011. Coord. Chem. Rev. 261, 73–155 (2014).

    Article  CAS  Google Scholar 

  49. Minasian, S. G., Krinsky, J. L. & Arnold, J. Evaluating f-element bonding from structure and thermodynamics. Chem. Eur. J. 17, 12234–12245 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Glassey, W. V. & Hoffman, R. A comparative study of Hamilton and overlap population methods for the analysis of chemical bonding. J. Chem. Phys. 113, 1698–1704 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Science Foundation (NSF, grant no. CHE-1213235). A.S.D. is supported by the Camille and Henry Dreyfus Postdoctoral Program in Environmental Chemistry. V.L.W. thanks the NSF for a Graduate Research Fellowship. NMR instrumentation purchases at IMSERC at Northwestern University were supported by the NSF (CHE-1048773). Computational resources supporting this work were provided by the Northwestern University Quest High Performance Computing cluster (M.D.) and CINECA Award HP10CPZK0T 2013 (A.M.). The authors thank S. Kozuch (University of North Texas) for providing the AUTOF program and valuable suggestions and R.J. Thomson (Northwestern University) for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

A.S.D., M.D. and T.J.M. conceived and designed the experiments. V.L.W., A.S.D. and M.D. performed the experiments and analysed the data. A.M. performed DFT calculations. A.S.D., A.M., M.D. and T.J.M. co-wrote the manuscript. All authors contributed to revising the manuscript.

Corresponding authors

Correspondence to Massimiliano Delferro or Tobin J. Marks.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 6879 kb)

Supplementary information

Crystallographic data for compound 4 (CIF 2243 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dudnik, A., Weidner, V., Motta, A. et al. Atom-efficient regioselective 1,2-dearomatization of functionalized pyridines by an earth-abundant organolanthanide catalyst. Nature Chem 6, 1100–1107 (2014). https://doi.org/10.1038/nchem.2087

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2087

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing