Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct observation of a borane–silane complex involved in frustrated Lewis-pair-mediated hydrosilylations

Abstract

Perfluorarylborane Lewis acids catalyse the addition of silicon–hydrogen bonds across C=C, C=N and C=O double bonds. This ‘metal-free’ hydrosilylation has been proposed to occur via borane activation of the silane Si–H bond, rather than through classical Lewis acid/base adducts with the substrate. However, the key borane/silane adduct had not been observed experimentally. Here it is shown that the strongly Lewis acidic, antiaromatic 1,2,3-tris(pentafluorophenyl)-4,5,6,7-tetrafluoro-1-boraindene forms an observable, isolable adduct with triethylsilane. The equilibrium for adduct formation was studied quantitatively through variable-temperature NMR spectroscopic investigations. The interaction of the silane with the borane occurs through the Si–H bond, as evidenced by trends in the Si–H coupling constant and the infrared stretching frequency of the Si–H bond, as well as by X-ray crystallography and theoretical calculations. The adduct's reactivity with nucleophiles demonstrates conclusively the role of this species in metal-free ‘frustrated-Lewis-pair’ hydrosilylation reactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The mechanism of FLP activation of Si–H and H–H bonds.
Figure 2: Equilibrium formation of borane–silane adduct 2.
Figure 3: Partial proton NMR spectrum of solutions of 1 and Et3Si–H.
Figure 4: Crystal structure of boraindene–silane adduct 2 (50% probability ellipsoids).
Figure 5: Reactivity of boraindene silane adduct 2.

Similar content being viewed by others

References

  1. Hartwig, J. F. Organotransition Metal Chemistry—From Bonding to Catalysis. (Univ. Science Books, 2010).

    Google Scholar 

  2. Bullock, R. M. Abundant metals give precious hydrogenation performance. Science 342, 1054–1055 (2013).

    Article  CAS  Google Scholar 

  3. Frey, G. D., Lavallo, V., Donnadieu, B., Schoeller, W. W. & Bertrand, G. Facile splitting of hydrogen and ammonia by nucleophilic activation at a single carbon center. Science 316, 439–441 (2007).

    Article  CAS  Google Scholar 

  4. Welch, G. C., Juan, R. R. S., Masuda, J. D. & Stephan, D. W. Reversible, metal-free hydrogen activation. Science 314, 1124–1126 (2006).

    Article  CAS  Google Scholar 

  5. Spikes, G. H., Fettinger, J. C. & Power, P. P. Facile activation of dihydrogen by an unsaturated heavier main group compound. J. Am. Chem. Soc. 127, 12232–12233 (2005).

    Article  CAS  Google Scholar 

  6. Massey, A. G., Park, A. J. & Stone, F. G. A. Tris(pentafluorophenyl)boron. Proc. Chem. Soc. 212 (1963).

  7. Parks, D. J. & Piers, W. E. Tris(pentafluorophenyl)boron-catalyzed hydrosilation of aromatic aldehydes, ketones, and esters. J. Am. Chem. Soc. 118, 9440–9441 (1996).

    Article  CAS  Google Scholar 

  8. Blackwell, J. M., Sonmor, E. R., Scoccitti, T. & Piers, W. E. B(C6F5)3-catalyzed hydrosilation of imines via silyliminium intermediates. Org. Lett. 2, 3921–3923 (2000).

    Article  CAS  Google Scholar 

  9. Rubin, M., Schwier, T. & Gevorgyan, V. Highly efficient B(C6F5)3-catalyzed hydrosilylation of olefins. J. Org. Chem. 67, 1936–1940 (2002).

    Article  CAS  Google Scholar 

  10. Blackwell, J. M., Morrison, D. J. & Piers, W. E. B(C6F5)3-catalyzed hydrosilation of enones and silyl enol ethers. Tetrahedron 58, 8247–8254 (2002).

    Article  CAS  Google Scholar 

  11. Berkefeld, A., Piers, W. E. & Parvez, M. Tandem frustrated Lewis pair/tris(pentafluorophenyl)borane-catalyzed deoxygenative hydrosilylation of carbon dioxide. J. Am. Chem. Soc. 132, 10660–10661 (2010).

    Article  CAS  Google Scholar 

  12. Müther, K., Mohr, J. & Oestreich, M. Silylium ion promoted reduction of imines with hydrosilanes. Organometallics 32, 6643–6646 (2013).

    Article  Google Scholar 

  13. Chen, D., Leich, V., Pan, F. & Klankermayer, J. Enantioselective hydrosilylation with chiral frustrated Lewis pairs. Chem. Eur. J. 18, 5184–5187 (2012).

    Article  CAS  Google Scholar 

  14. Chase, P. A., Welch, G. C., Jurca, T. & Stephan, D. W. Metal-free catalytic hydrogenation. Angew. Chem. Int. Ed. 46, 8050–8053 (2007).

    Article  CAS  Google Scholar 

  15. Chase, P. A., Jurca, T. & Stephan, D. W. Lewis acid-catalyzed hydrogenation: B(C6F5)3-mediated reduction of imines and nitriles with H2 . Chem. Commun. 1701–1703 (2008).

  16. Chernichenko, K. et al. A frustrated-Lewis-pair approach to catalytic reduction of alkynes to cis-alkenes. Nature Chem. 5, 718–723 (2013).

    Article  CAS  Google Scholar 

  17. Parks, D. J., Piers, W. E., Parvez, M., Atencio, R. & Zaworotko, M. J. Synthesis and solution and solid-state structures of tris(pentafluorophenyl)borane adducts of PhC(O)X (X=H, Me, OEt, NPr2i). Organometallics 17, 1369–1377 (1998).

    Article  CAS  Google Scholar 

  18. Blackwell, J. M., Piers, W. E., Parvez, M. & McDonald, R. Solution and solid-state characteristics of imine adducts with tris(pentafluorophenyl)borane. Organometallics 21, 1400–1407 (2002).

    Article  CAS  Google Scholar 

  19. Parks, D. J., Blackwell, J. M. & Piers, W. E. Studies on the mechanism of B(C6F5)3-catalyzed hydrosilation of carbonyl functions. J. Org. Chem. 65, 3090–3098 (2000).

    Article  CAS  Google Scholar 

  20. Stephan, D. W. ‘Frustrated Lewis pairs’; a concept for new reactivity and catalysis. Org. Biomol. Chem. 6, 1535–1539 (2008).

    Article  CAS  Google Scholar 

  21. Stephan, D. W. & Erker, G. Frustrated Lewis pairs: metal-free hydrogen activation and more. Angew. Chem. Int. Ed. 49, 46–76 (2010).

    Article  CAS  Google Scholar 

  22. Rokob, T. A., Hamza, A., Stirling, A. & Pápai, I. On the mechanism of B(C6F5)3-catalyzed direct hydrogenation of imines: inherent and thermally induced frustration. J. Am. Chem. Soc. 131, 2029–2036 (2009).

    Article  CAS  Google Scholar 

  23. Piers, W. E., Marwitz, A. J. V. & Mercier, L. G. Mechanistic aspects of bond activation with perfluoroarylboranes. Inorg. Chem. 50, 12252–12262 (2011).

    Article  CAS  Google Scholar 

  24. Grimme, S., Kruse, H., Goerigk, L. & Erker, G. The mechanism of dihydrogen activation by frustrated Lewis pairs revisited. Angew. Chem. Int. Ed. 49, 1402–1405 (2010).

    Article  CAS  Google Scholar 

  25. Rokob, T. A., Bakó, I., Stirling, A., Hamza, A. & Pápai, I. Reactivity models of hydrogen activation by frustrated Lewis pairs: synergistic electron transfers or polarization by electric field? J. Am. Chem. Soc. 135, 4425–4437 (2013).

    Article  CAS  Google Scholar 

  26. Sakata, K. & Fujimoto, H. Quantum chemical study of B(C6F5)3-catalyzed hydrosilylation of carbonyl group. J. Org. Chem. 78, 12505–12512 (2013).

    Article  CAS  Google Scholar 

  27. Rendler, S. & Oestreich, M. Conclusive evidence for an SN2–Si mechanism in the B(C6F5)3-catalyzed hydrosilylation of carbonyl compounds: implications for the related hydrogenation. Angew. Chem. Int. Ed. 47, 5997–6000 (2008).

    Article  CAS  Google Scholar 

  28. Hog, D. T. & Oestreich, M. B(C6F5)3-catalyzed reduction of ketones and imines using silicon-stereogenic silanes: stereoinduction by single-point binding. Eur. J. Org. Chem. 2009, 5047–5056 (2009).

    Article  Google Scholar 

  29. Hermeke, J., Mewald, M. & Oestreich, M. Experimental analysis of the catalytic cycle of the borane-promoted imine reduction with hydrosilanes: spectroscopic detection of unexpected intermediates and a refined mechanism. J. Am. Chem. Soc. 135, 17537–17546 (2013).

    Article  CAS  Google Scholar 

  30. Marwitz, A. J. V., Dutton, J. L., Mercier, L. G. & Piers, W. E. Dihydrogen activation with tBu3P/B(C6F5)3: a chemically competent indirect mechanism via in situ generated p-tBu2P–C6F4–B(C6F5)2 . J. Am. Chem. Soc. 133, 10026–10029 (2011).

    Article  CAS  Google Scholar 

  31. Parks, D. J., Piers, W. E. & Yap, G. P. A. Synthesis, properties, and hydroboration activity of the highly electrophilic borane bis(pentafluorophenyl)borane, HB(C6F5)2 . Organometallics 17, 5492–5503 (1998).

    Article  CAS  Google Scholar 

  32. Nikonov, G. I., Vyboishchikov, S. F. & Shirobokov, O. G. Facile activation of H–H and Si–H bonds by boranes. J. Am. Chem. Soc. 134, 5488–5491 (2012).

    Article  CAS  Google Scholar 

  33. Parks, D. J., von H. Spence, R. E. & Piers, W. E. Bis(pentafluorophenyl)borane: synthesis, properties, and hydroboration chemistry of a highly electrophilic borane reagent. Angew. Chem. Int. Ed. Engl. 34, 809–811 (1995).

    Article  CAS  Google Scholar 

  34. Chojnowski, J. et al. Mechanism of the B(C6F5)3-catalyzed reaction of silyl hydrides with alkoxysilanes. Kinetic and spectroscopic studies. Organometallics 24, 6077–6084 (2005).

    Article  CAS  Google Scholar 

  35. Jiang, Y. et al. The ‘catalytic nitrosyl effect’: NO bending boosting the efficiency of rhenium based alkene hydrogenations. J. Am. Chem. Soc. 135, 4088–4102 (2013).

    Article  CAS  Google Scholar 

  36. Bergquist, C. et al. Aqua, alcohol, and acetonitrile adducts of tris(perfluorophenyl)borane: evaluation of Brønsted acidity and ligand lability with experimental and computational methods. J. Am. Chem. Soc. 122, 10581–10590 (2000).

    Article  CAS  Google Scholar 

  37. Beringhelli, T., Maggioni, D. & D'Alfonso, G. 1H and 19F NMR investigation of the reaction of B(C6F5)3 with water in toluene solution. Organometallics 20, 4927–4938 (2001).

    Article  CAS  Google Scholar 

  38. Blackwell, J. M., Foster, K. L., Beck, V. H. & Piers, W. E. B(C6F5)3-catalyzed silation of alcohols: a mild, general method for synthesis of silyl ethers. J. Org. Chem. 64, 4887–4892 (1999).

    Article  CAS  Google Scholar 

  39. Gevorgyan, V., Rubin, M., Benson, S., Liu, J-X. & Yamamoto, Y. A novel B(C6F5)3-catalyzed reduction of alcohols and cleavage of aryl and alkyl ethers with hydrosilanes. J. Org. Chem. 65, 6179–6186 (2000).

    Article  CAS  Google Scholar 

  40. Richter, D., Tan, Y., Antipova, A., Zhu, X-Q. & Mayr, H. Kinetics of hydride abstractions from 2-arylbenzimidazolines. Chem. Asian J. 4, 1824–1829 (2009).

    Article  CAS  Google Scholar 

  41. Fan, C., Piers, W. E. & Parvez, M. Perfluoropentaphenylborole. Angew. Chem. Int. Ed. 48, 2955–2958 (2009).

    Article  CAS  Google Scholar 

  42. Fukazawa, A. et al. Reaction of pentaarylboroles with carbon monoxide: an isolable organoboron carbonyl complex. Chem. Sci. 3, 1814–1818 (2012).

    Article  CAS  Google Scholar 

  43. Fan, C., Mercier, L. G., Piers, W. E., Tuononen, H. M. & Parvez, M. Dihydrogen activation by antiaromatic pentaarylboroles. J. Am. Chem. Soc. 132, 9604–9606 (2010).

    Article  CAS  Google Scholar 

  44. Houghton, A. Y., Karttunen, V. A., Fan, C., Piers, W. E. & Tuononen, H. M. Mechanistic studies on the metal-free activation of dihydrogen by antiaromatic pentarylboroles. J. Am. Chem. Soc. 135, 941–947 (2012).

    Article  Google Scholar 

  45. Braunschweig, H., Damme, A., Hörl, C., Kupfer, T. & Wahler, J. Si–H bond activation at the boron center of pentaphenylborole. Organometallics 32, 6800–6803 (2013).

    Article  CAS  Google Scholar 

  46. Houghton, A. Y., Karttunen, V. A., Piers, W. E. & Tuononen, H. M. Hydrogen activation with perfluorinated organoboranes: 1,2,3-tris(pentafluorophenyl)-4,5,6,7-tetrafluoro-1-boraindene. Chem. Commun. 50, 1295–1298 (2014).

    Article  CAS  Google Scholar 

  47. Corey, J. Y. & Braddock-Wilking, J. Reactions of hydrosilanes with transition-metal complexes: formation of stable transition-metal silyl compounds. Chem. Rev. 99, 175–292 (1998).

    Article  Google Scholar 

  48. Nava, M. & Reed, C. A. Triethylsilyl perfluoro-tetraphenylborate, [Et3Si+][F20-BPh4], a widely used nonexistent compound. Organometallics 30, 4798–4800 (2011).

    Article  CAS  Google Scholar 

  49. Berkefeld, A. et al. Carbon monoxide activation via O-bound CO using decamethylscandocinium–hydridoborate ion pairs. J. Am. Chem. Soc. 134, 10843–10851 (2012).

    Article  CAS  Google Scholar 

  50. Bader, R. F. W. Atoms in Molecules: A Quantum Theory (Oxford Univ. Press, 1990).

    Google Scholar 

  51. Wrackmeyer, B., Milius, W. & Tok, O. L. Reaction of alkyn-1-yl(diorganyl)silanes with 1-boraadamantane: Si–H–B bridges confirmed by the molecular structure in the solid state and in solution. Chem. Eur. J. 9, 4732–4738 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding for the experimental work described was provided by the Natural Sciences and Engineering Research Council of Canada in the form of a Discovery Grant to W.E.P. Funding for the computational work described was provided by the Academy of Finland in the form of a Research Grant and Fellowship to H.M.T.

Author information

Authors and Affiliations

Authors

Contributions

A.Y.H. and W.E.P. conceived and designed the experiments, A.Y.H. performed the experiments and determined the X-ray structure, H.M.T. and A.M. conceived and designed the computational work, J.H. and A.M. executed the calculations and performed data analyses. A.Y.H., W.E.P. and A.M. co-wrote the paper with input from J.H. and H.M.T.

Corresponding authors

Correspondence to Warren E. Piers or Heikki M. Tuononen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3789 kb)

Supplementary information

Crystallographic data for compound 2 (CIF 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Houghton, A., Hurmalainen, J., Mansikkamäki, A. et al. Direct observation of a borane–silane complex involved in frustrated Lewis-pair-mediated hydrosilylations. Nature Chem 6, 983–988 (2014). https://doi.org/10.1038/nchem.2063

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2063

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing