Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A Star of David catenane

Abstract

We describe the synthesis of a [2]catenane that consists of two triply entwined 114-membered rings, a molecular link. The woven scaffold is a hexameric circular helicate generated by the assembly of six tris(bipyridine) ligands with six iron(II) cations, with the size of the helicate promoted by the use of sulfate counterions. The structure of the ligand extension directs subsequent covalent capture of the catenane by ring-closing olefin metathesis. Confirmation of the Star of David topology (two rings, six crossings) is provided by NMR spectroscopy, mass spectrometry and X-ray crystallography. Extraction of the iron(II) ions with tetrasodium ethylenediaminetetraacetate affords the wholly organic molecular link. The self-assembly of interwoven circular frameworks of controlled size, and their subsequent closure by multiple directed covalent bond-forming reactions, provides a powerful strategy for the synthesis of molecular topologies of ever-increasing complexity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Assembly of a hexameric circular iron(II) helicate [2](PF6)12 and subsequent ring closure to form a Star of David [2]catenate, [4](PF6)12.
Figure 2: 1H NMR spectra (600 MHz, 298 K, CD3CN/CDCl3 (1:1) (a–d), CDCl3 (e)) of uncoordinated ligand strand 1, linear (3) and circular (2) helicates, and metallated (4) and demetallated (5) Star of David [2]catenanes.
Figure 3: X-ray crystal structure of Star of David catenane, [4](PF6)(Ph4B)11.
Figure 4: Demetallation of the Star of David [2]catenate to form the wholly organic Star of David [2]catenand 5 and the unlinked macrocycle 6.

Similar content being viewed by others

References

  1. Alexander, J. W. & Briggs, G. B. On types of knotted curves. Ann. Math. 28, 562–586 (1926).

    Article  Google Scholar 

  2. Oegema, G. S. The History of the Shield of David: the Birth of a Symbol (Peter Lang Publishing Inc., 1996).

    Google Scholar 

  3. Sauvage, J-P. & Dietrich-Buchecker, C. Molecular Catenanes, Rotaxanes and Knots. A Journey through the World of Molecular Topology (Wiley-VCH, 1999).

    Book  Google Scholar 

  4. Schill, G. & Lüttringhaus, A. Gezielte synthese von catena-verbindungen [1]. Angew. Chem. 76, 567–568 (1964).

    Article  CAS  Google Scholar 

  5. Wikoff, W. R. et al. Topologically linked protein rings in the bacteriophage HK97 capsid. Science 289, 2129–2133 (2000).

    Article  CAS  Google Scholar 

  6. Kay, E. R., Leigh, D. A. & Zerbetto, F. Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2007).

    Article  CAS  Google Scholar 

  7. Siegel, J. S. Chemical topology and interlocking molecules. Science 304, 1256–1258 (2004).

    Article  CAS  Google Scholar 

  8. Fenlon, E. E. Open problems in chemical topology. Eur. J. Org. Chem. 5023–5035 (2008).

    Article  Google Scholar 

  9. Bruns, C. J. & Stoddart, J. F. The mechanical bond: a work of art. Top. Curr. Chem. 323, 19–72 (2012).

    Article  CAS  Google Scholar 

  10. Beves, J. E., Blight, B. A., Campbell, C. J., Leigh, D. A. & McBurney, R. T. Strategies and tactics for the metal-directed synthesis of rotaxanes, knots, catenanes, and higher order links. Angew. Chem. Int. Ed. 50, 9260–9327 (2011).

    Article  CAS  Google Scholar 

  11. Amabilino, D. B., Ashton, P. R., Reder, A. S., Spencer, N. & Stoddart, J. F. Olympiadane. Angew. Chem. Int. Ed. Engl. 33, 1286–1290 (1994).

    Article  Google Scholar 

  12. Chichak, K. S. et al. Molecular Borromean rings. Science 304, 1308–1312 (2004).

    Article  CAS  Google Scholar 

  13. Huang, S-L., Lin, Y-J., Hor, T. S. A. & Jin, G-X. Cp*Rh-based heterometallic metallarectangles: size-dependent Borromean link structures and catalytic acyl transfer. J. Am. Chem. Soc. 135, 8125–8128 (2013).

    Article  CAS  Google Scholar 

  14. Dietrich-Buchecker, C., Nierengarten, J-F. & Sauvage, J-P. Synthesis of a doubly interlocked [2]-catenane. J. Am. Chem. Soc. 116, 375–376 (1994).

    Article  Google Scholar 

  15. Dietrich-Buchecker, C. & Sauvage, J-P. Lithium templated synthesis of catenanes; efficient synthesis of doubly interlocked [2]-catenanes. Chem. Commun. 615–616 (1999).

  16. Ibukuro, F., Fujita, M., Yamaguchi, K. & Sauvage, J-P. Quantitative and spontaneous formation of a doubly interlocking [2]catenane using copper(I) and palladium(II) as templating and assembling centers. J. Am. Chem. Soc. 121, 11014–11015 (1999).

    Article  CAS  Google Scholar 

  17. McArdle, C. P., Jennings, M. C., Vittal, J. J. & Puddephatt, R. J. Molecular topology: easy self-assembly of an organometallic doubly braided [2]catenane. Angew. Chem. Int. Ed. 39, 3819–3822 (2000).

    Article  CAS  Google Scholar 

  18. Pentecost, C. D. et al. A molecular Solomon link. Angew. Chem. Int. Ed. 46, 218–222 (2007).

    Article  CAS  Google Scholar 

  19. Peinador, C., Blanco, V. & Quintela, J. M. A new doubly interlocked [2]catenane. J. Am. Chem. Soc. 131, 920–921 (2009).

    Article  CAS  Google Scholar 

  20. Ciengshin, T., Sha, R. & Seeman, N. C. Automatic molecular weaving prototyped by using single-stranded DNA. Angew. Chem. Int. Ed. 50, 4419–4422 (2011).

    Article  CAS  Google Scholar 

  21. Beves, J. E., Campbell, C. J., Leigh, D. A. & Pritchard, R. G. Tetrameric cyclic double helicates as a scaffold for a molecular Solomon link. Angew. Chem. Int. Ed. 52, 6464–6467 (2013).

    Article  CAS  Google Scholar 

  22. Prakasam, T. et al. Simultaneous self-assembly of a [2]catenane, a trefoil knot, and a Solomon link from a simple pair of ligands. Angew. Chem. Int. Ed. 52, 9956–9960 (2013).

    Article  CAS  Google Scholar 

  23. Lincheneau, C., Jean-Denis, B. & Gunnlaugsson, T. Self-assembly formation of mechanically interlocked [2]- and [3]catenanes using lanthanide ion [Eu(III)] templation and ring closing metathesis reactions. Chem. Commun. 50, 2857–2860 (2014).

    Article  CAS  Google Scholar 

  24. Fujita, M., Fujita, N., Ogura, K. & Yamaguchi, K. Spontaneous assembling of ten small components into a three-dimensionally interlocked compound consisting of the same two cage frameworks. Nature 400, 52–55 (1999).

    Article  CAS  Google Scholar 

  25. Ronson, T. K. et al. Stellated polyhedral assembly of a topologically complicated Pd4L4 ‘Solomon cube’. Nature Chem. 1, 212–216 (2009).

    Article  CAS  Google Scholar 

  26. Hasell, T. et al. Triply interlocked covalent organic cages. Nature Chem. 2, 750–755 (2010).

    Article  CAS  Google Scholar 

  27. Han, M., Engelhard, D. M. & Clever, G. H. Self-assembled coordination cages based on banana-shaped ligands. Chem. Soc. Rev. 43, 1848–1860 (2014).

    Article  CAS  Google Scholar 

  28. Zhang, G., Presly, O., White, F., Oppel, I. M. & Mastalerz, M. A shape-persistent quadruply interlocked giant cage catenane with two distinct pores in the solid state. Angew. Chem. Int. Ed. 53, 5126–5130 (2014).

    CAS  Google Scholar 

  29. Dietrich-Buchecker, C., Colasson, B. Jouvenot, D. & Sauvage, J-P. Synthesis of multi-1,10-phenanthroline ligands with 1,3-phenylene linkers and their lithium complexes. Chem. Eur. J. 11, 4374–4386 (2005).

    Article  CAS  Google Scholar 

  30. Ayme, J-F. et al. A synthetic molecular pentafoil knot. Nature Chem. 4, 15–20 (2012).

    Article  CAS  Google Scholar 

  31. Ayme, J-F. et al. Pentameric circular iron(II) double helicates and a molecular pentafoil knot. J. Am. Chem. Soc. 134, 9488–9497 (2012).

    Article  CAS  Google Scholar 

  32. Ayme, J-F., Beves, J. E., Campbell, C. J. & Leigh, D. A. Template synthesis of molecular knots. Chem. Soc. Rev. 42, 1700–1712 (2013).

    Article  CAS  Google Scholar 

  33. Hasenknopf, B. et al. Self-assembly of tetra- and hexanuclear circular helicates. J. Am. Chem. Soc. 119, 10956–10962 (1997).

    Article  CAS  Google Scholar 

  34. Hasenknopf, B., Lehn, J-M., Boumediene, N., Leize, E. & Van Dorsselaer, A. Kinetic and thermodynamic control in self-assembly: sequential formation of linear and circular helicates. Angew. Chem. Int. Ed. 37, 3265–3268 (1998).

    Article  CAS  Google Scholar 

  35. Garber, S. B., Kingsbury, J. S., Gray, B. L. & Hoveyda, A. H. Efficient and recyclable monomeric and dendritic Ru-based metathesis catalysts. J. Am. Chem. Soc. 122, 8168–8179 (2000).

    Article  CAS  Google Scholar 

  36. Sauvage, J-P. Interlacing molecular threads on transition metals: catenands, catenates, and knots. Acc. Chem. Res. 23, 319–327 (1990).

    Article  CAS  Google Scholar 

  37. Dietrich-Buchecker, C. & Sauvage, J-P. A synthetic molecular trefoil knot. Angew. Chem. Int. Ed. Engl. 28, 189–192 (1989).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Engineering and Physical Sciences Research Council (EPSRC). The authors thank the Diamond Light Source (UK), R. E. P. Winpenny and G. Whitehead (University of Manchester) for synchrotron beamtime on I19 (XR029), the EPSRC National Mass Spectrometry Service Centre (Swansea, UK) for data collection, and J-F. Lemonnier and M. Wilson (University of Manchester) for useful discussions and illustrations.

Author information

Authors and Affiliations

Authors

Contributions

A.J.S. carried out the synthesis and characterization studies, helped plan the experiments and write the manuscript. R.G.P. solved the crystal structure. D.A.L. helped plan the experiments and write the manuscript.

Corresponding author

Correspondence to David A. Leigh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2386 kb)

Supplementary information

Supplementary video (MP4 10887 kb)

Supplementary information

Crystallographic data for compound 4 (CIF 167 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leigh, D., Pritchard, R. & Stephens, A. A Star of David catenane. Nature Chem 6, 978–982 (2014). https://doi.org/10.1038/nchem.2056

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2056

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing