Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Redox-inactive metal ions modulate the reactivity and oxygen release of mononuclear non-haem iron(III)–peroxo complexes

Abstract

Redox-inactive metal ions that function as Lewis acids play pivotal roles in modulating the reactivity of oxygen-containing metal complexes and metalloenzymes, such as the oxygen-evolving complex in photosystem II and its small-molecule mimics. Here we report the synthesis and characterization of non-haem iron(III)–peroxo complexes that bind redox-inactive metal ions, (TMC)FeIII–(μ,η22-O2)–Mn+ (Mn+ = Sr2+, Ca2+, Zn2+, Lu3+, Y3+ and Sc3+; TMC, 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane). We demonstrate that the Ca2+ and Sr2+ complexes showed similar electrochemical properties and reactivities in one-electron oxidation or reduction reactions. However, the properties and reactivities of complexes formed with stronger Lewis acidities were found to be markedly different. Complexes that contain Ca2+ or Sr2+ ions were oxidized by an electron acceptor to release O2, whereas the release of O2 did not occur for complexes that bind stronger Lewis acids. We discuss these results in the light of the functional role of the Ca2+ ion in the oxidation of water to dioxygen by the oxygen-evolving complex.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Iron(III)–peroxo complexes binding redox-inactive metal ions.
Figure 2: Generation of 1-Ca2+ by O2 activation.
Figure 3: Effects of the Lewis acidity of redox-inactive metal ions bound to 1-Mn+.
Figure 4: EXAFS experiments and DFT geometry-optimized structures for 1-Ca2+, 1-Sr2+ and 1-Zn2+.
Figure 5: Conversion of 1-Sc3+ into 2 by electron transfer.
Figure 6: Analysis of the O2 product.

Similar content being viewed by others

References

  1. Hammarström, L. & Hammes-Schiffer, S. Artificial photosynthesis and solar energy. Acc. Chem. Res. 42, 1859–1860 (2009).

    Article  Google Scholar 

  2. Nocera, D. G. The artificial leaf. Acc. Chem. Res. 45, 767–776 (2012).

    Article  CAS  Google Scholar 

  3. Rivalta, I., Brudvig, G. W. & Batista, V. S. Oxomanganese complexes for natural and artificial photosynthesis. Curr. Opin. Chem. Biol. 16, 11–18 (2012).

    Article  CAS  Google Scholar 

  4. Ferreira, K. N., Iverson, T. M., Maghlaoui, K., Barber, J. & Iwata, S. Architecture of the photosynthetic oxygen-evolving center. Science 303, 1831–1838 (2004).

    Article  CAS  Google Scholar 

  5. Loll, B., Kern, J., Saenger, W., Zouni, A. & Biesiadka, J. Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature 438, 1040–1044 (2005).

    Article  CAS  Google Scholar 

  6. Umena, Y., Kawakami, K., Shen, J-R. & Kamiya, N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473, 55–60 (2011).

    Article  CAS  Google Scholar 

  7. Kanady, J. S., Tsui, E. Y., Day, M. W. & Agapie, T. A synthetic model of the Mn3Ca subsite of the oxygen-evolving complex in photosystem II. Science 333, 733–736 (2011).

    Article  CAS  Google Scholar 

  8. Tsui, E. Y., Tran, R., Yano, J. & Agapie, T. Redox-inactive metals modulate the reduction potential in heterometallic manganese–oxido clusters. Nature Chem. 5, 293–299 (2013).

    Article  CAS  Google Scholar 

  9. Kanady, J. S. et al. Oxygen atom transfer and oxidative water incorporation in cuboidal Mn3MOn complexes based on synthetic, isotopic labeling, and computational studies. J. Am. Chem. Soc. 135, 1073–1082 (2013).

    Article  CAS  Google Scholar 

  10. Tsui, E. Y. & Agapie, T. Reduction potential of heterometallic manganese–oxido cubane complexes modulated by redox inactive metals. Proc. Natl Acad. Sci. USA 110, 10084–10088 (2013).

    Article  CAS  Google Scholar 

  11. Cox, N., Pantazis, D. A., Neese, F. & Lubitz, W. Biological water oxidation. Acc. Chem. Res. 46, 1588–1596 (2013).

    Article  CAS  Google Scholar 

  12. Yachandra, V. K. & Yano, J. Calcium in the oxygen-evolving complex: structural and mechanistic role determined by X-ray spectroscopy. J. Photochem. Photobiol. B 104, 51–59 (2011).

    Article  CAS  Google Scholar 

  13. Hillier, W. & Wydrzynski, T. 18O-water exchange in photosystem II: substrate binding and intermediates of the water splitting cycle. Coord. Chem. Rev. 252, 306–317 (2008).

    Article  CAS  Google Scholar 

  14. Yocum, C. F. The calcium and chloride requirements of the O2 evolving complex. Coord. Chem. Rev. 252, 296–305 (2008).

    Article  CAS  Google Scholar 

  15. Cox, N. et al. Effect of Ca2+/Sr2+ substitution on the electronic structure of the oxygen-evolving complex of photosystem II: a combined multifrequency EPR, 55Mn-ENDOR, and DFT study of the S2 state. J. Am. Chem. Soc. 133, 3635–3648 (2011).

    Article  CAS  Google Scholar 

  16. Ishida, N. et al. Biosynthetic exchange of bromide for chloride and strontium for calcium in the photosystem II oxygen-evolving enzymes. J. Biol. Chem. 283, 13330–13340 (2008).

    Article  CAS  Google Scholar 

  17. Vrettos, J. S., Stone, D. A. & Brudvig, G. W. Quantifying the ion selectivity of the calcium site in photosystem II: evidence for direct involvement of Ca2+ in O2 formation. Biochemistry 40, 7937–7945 (2001).

    Article  CAS  Google Scholar 

  18. Fukuzumi, S. et al. Crystal structure of a metal ion-bound oxoiron(IV) complex and implications for biological electron transfer. Nature Chem. 2, 756–759 (2010).

    Article  CAS  Google Scholar 

  19. Chen, J. et al. A mononuclear non-heme manganese(IV)–oxo complex binding redox-inactive metal ions. J. Am. Chem. Soc. 135, 6388–6391 (2013).

    Article  CAS  Google Scholar 

  20. Leeladee, P. et al. Valence tautomerization in a high-valent manganese–oxo porphyrinoid complex induced by a Lewis acid. J. Am. Chem. Soc. 134, 10397–10400 (2012).

    Article  CAS  Google Scholar 

  21. Pfaff, F. F. et al. An oxocobalt(IV) complex stabilized by Lewis acid interactions with scandium(III) ions. Angew. Chem. Int. Ed. 50, 1711–1715 (2011).

    Article  CAS  Google Scholar 

  22. Morimoto, Y. et al. Metal ion-coupled electron transfer of a nonheme oxoiron(IV) complex: remarkable enhancement of electron-transfer rates by Sc3+. J. Am. Chem. Soc. 133, 403–405 (2011).

    Article  CAS  Google Scholar 

  23. Park, J., Morimoto, Y., Lee, Y-M., Nam, W. & Fukuzumi, S. Metal ion effect on the switch of mechanism from direct oxygen transfer to metal ion-coupled electron transfer in the sulfoxidation of thioanisoles by a non-heme iron(IV)–oxo complex. J. Am. Chem. Soc. 133, 5236–5239 (2011).

    Article  CAS  Google Scholar 

  24. Park, J., Morimoto, Y., Lee, Y-M., Nam, W. & Fukuzumi, S. Proton-promoted oxygen atom transfer vs proton-coupled electron transfer of a non-heme iron(IV)–oxo complex. J. Am. Chem. Soc. 134, 3903–3911 (2012).

    Article  CAS  Google Scholar 

  25. Yoon, H. et al. Enhanced electron-transfer reactivity of nonheme manganese(IV)–oxo complexes by binding scandium ions. J. Am. Chem. Soc. 135, 9186–9194 (2013).

    Article  CAS  Google Scholar 

  26. Cho, J. et al. Structure and reactivity of a mononuclear non-haem iron(III)–peroxo complex. Nature 478, 502–505 (2011).

    Article  CAS  Google Scholar 

  27. Lee, Y-M. et al. A mononuclear nonheme iron(III)–peroxo complex binding redox-inactive metal ions. Chem. Sci. 4, 3917–3912 (2013).

    Article  CAS  Google Scholar 

  28. Li, F., Van Heuvelen, K. M., Meier, K. K., Münck, E. & Que, L. Jr. Sc3+-triggered oxoiron(IV) formation from O2 and its non-heme iron(II) precursor via a Sc3+–peroxo–Fe3+ intermediate. J. Am. Chem. Soc. 135, 10198–10201 (2013).

    Article  CAS  Google Scholar 

  29. Yao, S. et al. O–O bond activation in heterobimetallic peroxides: synthesis of the unique peroxide [LNi(μ,η22-O2)K] and its conversion to a bis(μ-hydroxo) Ni–Zn complex. Angew. Chem. Int. Ed. 48, 8107–8110 (2009).

    Article  CAS  Google Scholar 

  30. Fukuzumi, S., Patz, M., Suenobu, T., Kuwahara, Y. & Itoh, S. ESR spectra of superoxide anion–scandium complexes detectable in fluid solution. J. Am. Chem. Soc. 121, 1605–1606 (1999).

    Article  CAS  Google Scholar 

  31. Kawashima, T., Ohkubo, K. & Fukuzumi, S. Stepwise vs. concerted pathways in scandium ion-coupled electron transfer from superoxide ion to p-benzoquinone derivatives. Phys. Chem. Chem. Phys. 13, 3344–3352 (2011).

    Article  CAS  Google Scholar 

  32. Fukuzumi, S. & Ohkubo, K. Quantitative evaluation of Lewis acidity of metal ions derived from the g values of ESR spectra of superoxide: metal ion complexes in relation to the promoting effects in electron transfer reactions. Chem. Eur. J. 6, 4532–4535 (2000).

    Article  CAS  Google Scholar 

  33. Lee, Y-M., Kotani, H., Suenobu, T., Nam, W. & Fukuzumi, S. Fundamental electron-transfer properties of non-heme oxoiron(IV) complexes. J. Am. Chem. Soc. 130, 434–435 (2008).

    Article  CAS  Google Scholar 

  34. Hong, D. et al. Water oxidation catalysis with nonheme iron complexes under acidic and basic conditions: homogeneous or heterogeneous. Inorg. Chem. 52, 9522–9531 (2013).

    Article  CAS  Google Scholar 

  35. Kok, B., Forbush, B. & McGloin, M. Cooperation of changes in photosynthetic O2 evolution. 1. A linear four step mechanism. Photochem. Photobiol. 11, 457–467 (1970).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was supported by KOSEF/MEST of Korea through the CRI (NRF-2012R1A3A2048842 to W.N.), GRL (NRF-2010-00353 to W.N.) and MSIP of Korea through NRF (2013R1A1A2062737 to K-B.C.) and an ALCA project from JST (S.F.) from MEXT of Japan. Stanford Synchrotron Radiation Lightsource (SSRL) operations are funded by the US Department of Energy (DOE) Basic Energy Sciences. The SSRL Structural Molecular Biology program is supported by National Institutes of Health National Center for Research Resources (P41 RR001209) and DOE Biological Environmental Research (R.S.).

Author information

Authors and Affiliations

Authors

Contributions

W.N. conceived and designed the experiments; S.B., Y-M.L., S.H., K-B.C., Y.N. and M.S.S. performed the experiments; Y-M.L., R.S., S.F., S.B., K-B.C., M.S.S. and S.H. analysed the data; W.N., S.F., Y-M.L., R.S. and K-B.C. co-wrote the paper.

Corresponding authors

Correspondence to Ritimukta Sarangi, Shunichi Fukuzumi or Wonwoo Nam.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 953 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bang, S., Lee, YM., Hong, S. et al. Redox-inactive metal ions modulate the reactivity and oxygen release of mononuclear non-haem iron(III)–peroxo complexes. Nature Chem 6, 934–940 (2014). https://doi.org/10.1038/nchem.2055

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2055

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing