Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chiral self-sorting and amplification in isotropic liquids of achiral molecules

Abstract

According to our present knowledge, the spontaneous resolution of racemic mixtures of chiral molecules or chiral conformers of achiral molecules into macroscopic chiral superstructures requires the confinement of these molecules in a crystal lattice, on surfaces or in other well-ordered assemblies. Herein we provide the first experimental evidence that mirror-symmetry breaking can also take place at a liquid–liquid phase transition in isotropic liquids of achiral molecules, even at relatively high temperatures around 200 °C. It is proposed that cooperative segregation of enantiomorphic molecular conformations gives rise to a conglomerate of two chiral and immiscible liquids. In these liquid conglomerates a strong chiral amplification was observed, which led to degeneracy from a stochastic distribution and eventually provided uniform chirality. We anticipate that this work will contribute to the understanding of symmetry breaking in soft matter and provide a new tool for the identification of chirality traces, and possibly affect the discussion of the emergence of chirality in prebiotic systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure and phase transitions of compound 1a.
Figure 2: Photomicrographs of the Iso1[*] phase of 1a.
Figure 3: XRD patterns, molecular conformations and self-assembly of compound 1a.
Figure 4: Change of cluster size at the Iso2–Iso1[*] transition.
Figure 5: Other compounds with Iso1–Iso2 phase transitions.
Figure 6: Mixtures of 1a with an n-alkane.

Similar content being viewed by others

References

  1. Pasteur, L. Recherches sur les relations qui peuvent exister entre la forme cristalline, la composition chimique et le sens de la polarisation rotatoire. Ann. Chim. Phys. 24, 442–459 (1848).

    Google Scholar 

  2. Safont-Sempere, M., Fernandez, G. & Würthner, F. Self-sorting phenomena in complex supramolecular systems. Chem. Rev. 111, 5784–5814 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Jacques, J., Collet, A. & Wilen S. H. Enantiomers, Racemates and Resolutions (Krieger, 1994).

    Google Scholar 

  4. Viedma, C. Chiral symmetry breaking during crystallization: complete chiral purity induced in nonlinear autocatalysis and recycling. Phys. Rev. Lett. 94, 065504 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Haq, S., Liu, N., Humblot, V., Jansen, A. P. J. & Raval, R. Drastic symmetry breaking in supramolecular organization of enantiomerically unbalanced monolayers at surfaces. Nature Chem. 1, 409–414 (2009).

    Article  CAS  Google Scholar 

  6. Ernst, K. H. Supramolecular surface chirality. Top. Curr. Chem. 265, 209–252 (2006).

    Article  CAS  Google Scholar 

  7. Raval, R. Chiral expression from molecular assemblies at metal surfaces: insights from surface science techniques. Chem. Soc. Rev. 38, 707–721 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Weissbuch, I., Leiserowitz, L. & Lahav, M. Stochastic ‘mirror symmetry breaking’ via self-assembly, reactivity and amplification of chirality: relevance to abiotic conditions. Top. Curr. Chem. 259, 123–163 (2005).

    Article  CAS  Google Scholar 

  9. Pijper, D. & Feringa, B. L. Control of dynamic helicity at the macro- and supramolecular level. Soft Matter 4, 1349–1372 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Amabilino, D. B. Chirality at the Nanoscale (Wiley-VCH, 2009).

    Book  Google Scholar 

  11. Perez-Garcia, L. & Amabilino, D. B. Spontaneous resolution, whence and whither: from enantiomorphic solids to chiral liquid crystals, monolayers and macro- and supra-molecular polymers and assemblies. Chem. Soc. Rev. 36, 941–967 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Sato, K., Itoh, Y. & Aida, T. Homochiral supramolecular polymerization of bowl shape chiral macrocycles in solution. Chem. Sci. 5, 136–140 (2014).

    Article  CAS  Google Scholar 

  13. Sisco, S. W. & Moore, J. S. Homochiral self-sorting of BINOL macrocycles. Chem. Sci. 5, 81–85 (2014).

    Article  CAS  Google Scholar 

  14. Reddy, R. A. & Tschierske, C. Bent-core liquid crystals: polar order, superstructural chirality and spontaneous desymmetrisation in soft matter systems. J. Mater. Chem. 16, 907–961 (2006).

    Article  CAS  Google Scholar 

  15. Link, D. R. et al. Spontaneous formation of macroscopic chiral domains in a fluid smectic phase of achiral molecules. Science 278, 1924–1927 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Takezoe, H. Spontaneous achiral asymmetry breaking in liquid crystalline phases. Top. Curr. Chem. 318, 303–330 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Hough, L. E. et al. Helical nanofilament phases. Science 325, 456–460 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Takanishi, Y. et al. Spontaneous enantiomeric resolution in a fluid smectic phase of a racemate. Angew. Chem. Int. Ed. 38, 2353–2356 (1999).

    Article  CAS  Google Scholar 

  19. Cowling, S. J., Hall, A. W. & Goodby, J. W. Electrooptic response in a racemic smectic C liquid crystal. Adv. Mater. 17, 1077–1080 (2005).

    Article  CAS  Google Scholar 

  20. Kane, A. et al. Electric field driven deracemization. ChemPhysChem 8, 170–174 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Alasaar, M., Prehm, M., Nagaraj, M., Vij, J. K. & Tschierske, C. A liquid crystalline phase with uniform tilt, local polar order and capability of symmetry breaking. Adv. Mater. 25, 2186–2191 (2013).

    Article  CAS  Google Scholar 

  22. Kim, E. H., Kadkin, O. N., Kim, S. Y. & Choi, M-G. Tetrahedratic mesophases, ambidextrous chiral domains and helical superstructures produced by achiral 1,1′-disubstituted ferrocene derivatives. Eur. J. Inorg. Chem. 2933–2941 (2011).

  23. Nagayame, H. et al. Spontaneous deracemization of disc-like molecules in the columnar phase. Angew. Chem. Int. Ed. 49, 445–448 (2010).

    Article  CAS  Google Scholar 

  24. Roche C. et al. Homochiral columns constructed by chiral self-sorting during supramolecular helical organization of hat-shaped molecules. J. Am. Chem. Soc. 136, 7169–7185 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Kajitani, T., Kohmoto, S., Yamamoto, M. & Kishikawa, K. Spontaneous chiral induction in a cubic phase. Chem. Mater. 17, 3812–3819 (2005).

    Article  CAS  Google Scholar 

  26. Dantlgraber, G. et al. Chirality and macroscopic polar order in a ferroelectric smectic liquid–crystalline phase formed by achiral polyphilic bent-core molecules. Angew. Chem. Int. Ed. 41, 2408–2412 (2002).

    Article  CAS  Google Scholar 

  27. Hough, L. E. et al. Chiral isotropic liquids from achiral molecules. Science 325, 452–456 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Görtz, V. & Goodby, J. W. Enantioselective segregation in achiral nematic liquid crystals. Chem. Commun. 2005, 3262–3264 (2005).

    Article  CAS  Google Scholar 

  29. Pelzl, G., Eremin, A., Diele, S., Kresse H. & Weissflog W. Spontaneous chiral ordering in the nematic phase of an achiral banana-shaped compound. J. Mater. Chem. 12, 2591–2593 (2002).

    Article  CAS  Google Scholar 

  30. Borshch, V. et al. Nematic twist-bend phase with nanoscale modulation of molecular orientation. Nature Commun. 4, 2635 (2013).

    Article  CAS  Google Scholar 

  31. Chen, D. et al. Chiral heliconical ground state of nanoscale pitch in a nematic liquid crystal of achiral molecular dimers. Proc. Natl Acad. Sci. USA 110, 15931–15936 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Toxveard, S. Origin of homochirality in biosystems. Int. J. Mol. Sci. 10, 1290–1299 (2009).

    Article  CAS  Google Scholar 

  33. Toxvaerd, S. Molecular dynamics simulations of isomerisation kinetics in condensed fluids. Phys. Rev. Lett. 85, 4747–4750 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Poole, P. H., Grande, T. Angell, C. A. & McMillan, P. F. Polymorphic phase transitions in liquids and glasses. Science 275, 322–323 (1997).

    Article  CAS  Google Scholar 

  35. Tanaka, H. Importance of many-body orientational correlations in the physical description of liquids. Faraday Discuss. 167, 9–76 (2013).

    Article  PubMed  CAS  Google Scholar 

  36. Goodby, J. W., Dunmur, D. A. & Collings, J. P. Lattice melting at the clearing point in frustrated systems. Liq. Cryst. 19, 703–709 (1995).

    Article  CAS  Google Scholar 

  37. Seddon, J. M. & Templer, R. H. in Handbook of Biological Physics Vol. 1 (ed. Lipowsky, R. & Sackmann, E.) Ch. 3 (Elsevier, 1995).

    Google Scholar 

  38. Kutsumizu, S., Kato, R., Yamada, M. & Yano, S. Structural studies of 4′-n-alkoxy-3′-nitrobiphenyl-4-carboxylic acids by infrared spectroscopic analysis. J. Phys. Chem. B, 101, 10666–10673 (1997).

    Article  CAS  Google Scholar 

  39. Kutsumizu, S., Morita, K., Yano, S. & Nojima, S. Cubic phases of binary systems of 4′-n-tetradecyloxy-3′-nitrobiphenyl-4-carboxylic acid (ANBC-14)–n-alkane. Liq. Cryst. 29, 1459–1468 (2002).

    Article  CAS  Google Scholar 

  40. Levelut, A-M. & Clerc, M. Structural investigations on ‘smectic D’ and related mesophases. Liq. Cryst. 24, 105–115 (1998).

    Article  CAS  Google Scholar 

  41. Walba, D. M., Eshdat, L., Körblova, E. & Shoemaker, R. K. On the nature of the B4 banana phase: crystal or not a crystal. Cryst. Growth Des. 5, 2091–2099 (2005).

    Article  CAS  Google Scholar 

  42. Guinier, A. X-ray Diffraction (Freeman, 1963).

    Google Scholar 

  43. Nakazawa, Y., Yamamura, Y., Kutsumizu, S. & Saito, K. Molecular mechanism responsible for reentrance to Ia d gyroid phase in cubic mesogen BABH(n). J. Phys. Soc. Jpn 81, 094601 (2012).

    Article  CAS  Google Scholar 

  44. Frisch, M. J. et al. Gaussian 09, Revision A.1 (Gaussian Inc., Wallingford, Connecticut, 2009).

  45. Iski, E. V., Tierrney, H. L., Jewell, A. D. & Sykes, E. C. H. Spontaneous transmission of chirality through multiple length scales. Chem. Eur. J. 17, 7205–7212 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Tschierske, C. Development of structural complexity in liquid crystal self-assembly. Angew. Chem. Int. Ed. 52, 8828–8878 (2013).

    Article  CAS  Google Scholar 

  47. Gray, G. W., Jones, B. & Marson, F. Mesomorphism and chemical constitution. Part VIII. The effect of 3′-substituents on the mesomorphism of the 4′-n-alkoxydiphenyl-4-carboxylic acids and their alkyl esters. J. Chem. Soc. 393–401 (1957).

  48. Kutsumizu, S., Yamada, M. & Yano, S. Mesomorphic phase transitions of a series of D-phase compounds. Liq. Cryst. 16, 1109–1113 (1994).

    Article  CAS  Google Scholar 

  49. Hembury, G. A., Borovkov, V. V. & Inuoe, Y. Chirality-sensing supramolecular systems. Chem. Rev. 108, 1–73 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Avalos, M., Babiano, R., Cintas, P., Jimenez, J. L. & Palacios, J. C. Homochirality and chemical evolution: new vistas and reflections on recent models. Tetrahedron Asym. 21, 1030–1040 (2010).

    Article  CAS  Google Scholar 

  51. Barron, L. D. Chirality and life. Space Sci. Rev. 135, 187–201 (2008).

    Article  CAS  Google Scholar 

  52. Tortora, L. & Lavrentovich, O. D. Chiral symmetry breaking by spatial confinement in tactoidal droplets of lyotropic chromonic liquid crystal. Proc. Natl Acad. Sci. USA 108, 5163–5168 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kauffman, S. A. The Origins of Order. Self-organization and Selection in Evolution (Oxford Univ. Press, 1993).

    Google Scholar 

  54. Matraszek, J. et al. Molecular factors responsible for the formation of the axially polar columnar mesophase ColhPA . Chem. Eur. J. 13, 3377–3385 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M.P. and C.T. acknowledge the support of the German Research Foundation (DFG, FG 1145, TS 39/21-2). We thank A. Achilles and K. Saalwächter, Institute of Physics, University Halle, for discussions and NMR studies.

Author information

Authors and Affiliations

Authors

Contributions

The compound was designed by C.D. and C.T. and synthesized and purified by T.R. and C.D. Optical experiments were conducted by C.D. and XRD investigations by M.P. The manuscript was written by C.T. and computations were performed by M.B. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Carsten Tschierske.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2207 kb)

Supplementary movie

Supplementary movie (AVI 2668 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dressel, C., Reppe, T., Prehm, M. et al. Chiral self-sorting and amplification in isotropic liquids of achiral molecules. Nature Chem 6, 971–977 (2014). https://doi.org/10.1038/nchem.2039

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2039

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing