Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-performance Ag–Co alloy catalysts for electrochemical oxygen reduction

An Erratum to this article was published on 22 September 2014

This article has been updated

Abstract

The electrochemical oxygen reduction reaction is the limiting half-reaction for low-temperature hydrogen fuel cells, and currently costly Pt-based electrocatalysts are used to generate adequate rates. Although most other metals are not stable in typical acid-mediated cells, alkaline environments permit the use of less costly electrodes, such as silver. Unfortunately, monometallic silver is not sufficiently active for economical fuel cells. Herein we demonstrate the design of low-cost Ag–Co surface alloy nanoparticle electrocatalysts for oxygen reduction. Their performance relative to that of Pt is potential dependent, but reaches over half the area-specific activity of Pt nanoparticle catalysts and is more than a fivefold improvement over pure silver nanoparticles at typical operating potentials. The Ag–Co electrocatalyst was initially identified with quantum chemical calculations and then synthesized using a novel technique that generates a surface alloy, despite bulk immiscibility of the constituent materials. Characterization studies support the hypothesis that the activity improvement comes from a ligand effect, in which cobalt atoms perturb surface silver sites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pourbaix diagram for the oxidation of various metals.
Figure 2: DFT-calculated free-energy diagram for ORR on alloy catalyst surfaces.
Figure 3: Synthesis scheme and electrochemical oxygen-reduction performance of Ag–Co surface alloy materials.
Figure 4: Comparative CV of the Ag–Co surface alloy.
Figure 5: Electron microscopy and spectroscopy of Ag–Co materials.

Similar content being viewed by others

Change history

  • 11 August 2014

    Technical issues with our online publication processes resulted in this Article being published the day after that referred to in the print version. The official date of publication is 11 August 2014.

References

  1. The US Department of Energy (DOE). Energy Efficiency and Renewable Energy; www1.eere.energy.gov/hydrogenandfuelcells/mypp/

  2. Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486, 43–51 (2012).

    Article  CAS  Google Scholar 

  3. Borup, R. et al. Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem. Rev. 107, 3904–3951 (2007).

    Article  CAS  Google Scholar 

  4. Gasteiger, H. A., Kocha, S. S., Sompalli, B. & Wagner, F. T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B 56, 9–35 (2005).

    Article  CAS  Google Scholar 

  5. Wagner, F. T., Lakshmanan, B. & Mathias, M. F. Electrochemistry and the future of the automobile. J. Phys. Chem. Lett. 1, 2204–2219 (2010).

    Article  CAS  Google Scholar 

  6. Pourbaix, M. Atlas of Electrochemical Equilibria in Aqueous Solutions (National Association of Corrosion Engineers, 1974).

    Google Scholar 

  7. Oezaslan, M., Hasché, F. & Strasser, P. Oxygen electroreduction on PtCo3, PtCo and Pt3Co alloy nanoparticles for alkaline and acidic PEM fuel cells. J. Electrochem. Soc. 159, B394–B405 (2012).

    Article  CAS  Google Scholar 

  8. Subbaraman, R. et al. Origin of anomalous activities for electrocatalysts in alkaline electrolytes. J. Phys. Chem. C 116, 22231–22237 (2012).

    Article  CAS  Google Scholar 

  9. US Geological Survey. Mineral Commodity Summaries 2010; http://minerals.usgs.gov/minerals/pubs/mcs/ (2010).

  10. Spendelow, J. S. & Wieckowski, A. Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media. Phys. Chem. Chem. Phys. 9, 2654–2675 (2007).

    Article  CAS  Google Scholar 

  11. Blizanac, B. B., Ross, P. N. & Markovic, N. M. Oxygen reduction on silver low-index single-crystal surfaces in alkaline solution: rotating ring disk (Ag(hkl)) studies. J. Phys. Chem. B 110, 4735–4741 (2006).

    Article  CAS  Google Scholar 

  12. Coutanceau, C., Demarconnay, L., Lamy, C. & Leger, J. M. Development of electrocatalysts for solid alkaline fuel cell (SAFC). J. Power Sources 156, 14–19 (2006).

    Article  CAS  Google Scholar 

  13. Wiberg, G. K. H., Mayrhofer, K. J. J. & Arenz, M. Investigation of the oxygen reduction activity on silver – a rotating disc electrode study. Fuel Cells 10, 575–581 (2010).

    Article  CAS  Google Scholar 

  14. Singh, P. & Buttry, D. A. Comparison of oxygen reduction reaction at silver nanoparticles and polycrystalline silver electrodes in alkaline solution. J. Phys. Chem. C 116, 10656–10663 (2012).

    Article  CAS  Google Scholar 

  15. Varcoe, J. R. & Slade, R. C. T. Prospects for alkaline anion-exchange membranes in low temperature fuel cells. Fuel Cells 5, 187–200 (2005).

    Article  CAS  Google Scholar 

  16. Varcoe, J. R., Slade, R. C. T., Wright, G. L. & Chen, Y. L. Steady-state dc and impedance investigations of H2/O2 alkaline membrane fuel cells with commercial Pt/C, Ag/C, and Au/C cathodes. J. Phys. Chem. B 110, 21041–21049 (2006).

    Article  CAS  Google Scholar 

  17. Adams, L., Poynton, S. & Tamain, C. A carbon dioxide tolerant aqueous-electrolyte-free anion-exchange membrane alkaline fuel cell. ChemSusChem 1, 79–81 (2008).

    Article  CAS  Google Scholar 

  18. Strmcnik, D. et al. Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nature Chem. 5, 300–306 (2013).

    Article  CAS  Google Scholar 

  19. Blizanac, B. B., Ross, P. N. & Markovic, N. M. Oxygen electroreduction on Ag(111): the pH effect. Electrochim. Acta 52, 2264–2271 (2007).

    Article  CAS  Google Scholar 

  20. Stamenkovic, V. R. et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315, 493–497 (2007).

    Article  CAS  Google Scholar 

  21. Stephens, I. E. L., Bondarenko, A. S., Grønbjerg, U., Rossmeisl, J. & Chorkendorff, I. Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy Environ. Sci. 5, 6744–6762 (2012).

    Article  CAS  Google Scholar 

  22. Holewinski, A. & Linic, S. Elementary mechanisms in electrocatalysis: revisiting the ORR Tafel slope. J. Electrochem. Soc. 159, H864–H870 (2012).

    Article  CAS  Google Scholar 

  23. Markovic, N. M. & Ross, P. N. Surface science studies of model fuel cell electrocatalysts. Surf. Sci. Rep. 45, 117–229 (2002).

    Article  CAS  Google Scholar 

  24. Tripković, V., Skúlason, E., Siahrostamia, S., Nørskov, J. K. & Rossmeisl, J. The oxygen reduction reaction mechanism on Pt(111) from density functional theory calculations. Electrochim. Acta 55, 7975–7981 (2010).

    Article  Google Scholar 

  25. Savinova, E. R. et al. Structure and dynamics of the interface between a Ag single crystal electrode and an aqueous electrolyte. Discuss. Faraday Soc. 121, 181–198 (2002).

    Article  CAS  Google Scholar 

  26. Horswell, S. L. et al. A comparative study of hydroxide adsorption on the (111), (110), and (100) faces of silver with cyclic voltammetry, ex situ electron diffraction, and in situ second harmonic generation. Langmuir 20, 10970–10981 (2004).

    Article  CAS  Google Scholar 

  27. Hansen, H. A., Rossmeisl, J. & Norskov, J. K. Surface Pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT. Phys. Chem. Chem. Phys. 10, 3722–3730 (2008).

    Article  CAS  Google Scholar 

  28. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  Google Scholar 

  29. Xin, H. L. & Linic, S. Communications: exceptions to the d-band model of chemisorption on metal surfaces: the dominant role of repulsion between adsorbate states and metal d-states. J. Chem. Phys. 132, 221101 (2010).

    Article  Google Scholar 

  30. Xin, H., Holewinski, A. & Linic, S. Predictive structure–reactivity models for rapid screening of Pt-based multimetallic electrocatalysts for the oxygen reduction reaction. ACS Catalysis 2, 12–16 (2012).

    Article  CAS  Google Scholar 

  31. Zhang, Z. Y., Nenoff, T. M., Huang, J. Y., Berry, D. T. & Provencio, P. P. Room temperature synthesis of thermally immiscible Ag-Ni nanoalloys. J. Phys. Chem. C 113, 1155–1159 (2009).

    Article  CAS  Google Scholar 

  32. Wang, D. & Li, Y. Bimetallic nanocrystals: liquid-phase synthesis and catalytic applications. Adv. Mater. 23, 1044–1060 (2011).

    Article  CAS  Google Scholar 

  33. Gong, K., Su, D. & Adzic, R. R. Platinum-monolayer shell on AuNi0.5Fe nanoparticle core electrocatalyst with high activity and stability for the oxygen reduction reaction. J. Am. Chem. Soc. 132, 14364–14366 (2010).

    Article  CAS  Google Scholar 

  34. Goodwin, A. L. et al. Colossal positive and negative thermal expansion in the framework material Ag3[Co(CN)6]. Science 319, 794–797 (2008).

    Article  CAS  Google Scholar 

  35. Ludi, A., Gudel, H. U. & Dvorak, V. The structure of H3Co(CN)6 and Ag3Co(CN)6 . Helv. Chim. Acta 7, 2035–2039 (1967).

    Article  Google Scholar 

  36. Fernandez, J., Walsh, D. & Bard, A. Thermodynamic guidelines for the design of bimetallic catalysts for oxygen electroreduction and rapid screening by scanning electrochemical microscopy. M–Co (M: Pd, Ag, Au). J. Am. Chem. Soc. 357–365 (2005).

  37. Lima, F. H. B., de Castro, J. F. R. & Ticianelli, E. A. Silver–cobalt bimetallic particles for oxygen reduction in alkaline media. J. Power Sources 161, 806–812 (2006).

    Article  CAS  Google Scholar 

  38. Loglio, F. et al. Cobalt monolayer islands on Ag(111) for ORR catalysis. ChemSusChem 4, 1112–7 (2011).

    Article  CAS  Google Scholar 

  39. Schmidt, T. J. et al. Characterization of high-surface area electrocatalysts using a rotating disk electrode configuration. J. Electrochem. Soc. 145, 2354–2358 (1998).

    Article  CAS  Google Scholar 

  40. Kirowa-Eisner, E., Bonfil, Y., Tzur, D. & Gileadi, E. Thermodynamics and kinetics of upd of lead on polycrystalline silver and gold. J. Electroanal. Chem. 552, 171–183 (2003).

    Article  CAS  Google Scholar 

  41. Herrero, E., Buller, L. J. & Abruna, H. D. Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials. Chem. Rev. 101, 1897–1930 (2001).

    Article  CAS  Google Scholar 

  42. Zhang, J., Sasaki, K., Sutter, E. & Adzic, R. R. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 315, 220–222 (2007).

    Article  CAS  Google Scholar 

  43. Koenigsmann, C. et al. Enhanced electrocatalytic performance of processed, ultrathin, supported Pd–Pt core–shell nanowire catalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 133, 9783–9795 (2011).

    Article  CAS  Google Scholar 

  44. Wang, C. et al. Multimetallic Au/FePt3 nanoparticles as highly durable electrocatalyst. Nano Lett. 11, 919–926 (2011).

    Article  CAS  Google Scholar 

  45. Bratsch, S. Standard electrode potentials and temperature coefficients in water at 298.15K. J. Phys. Chem. Ref. Data 18, 1–21 (1989).

    Article  CAS  Google Scholar 

  46. Gerken, J. B. et al. Electrochemical water oxidation with cobalt-based electrocatalysts from pH 0–14: the thermodynamic basis for catalyst structure, stability, and activity. J. Am. Chem. Soc. 133, 14431–14442 (2011).

    Article  CAS  Google Scholar 

  47. Krivanek, O. L. et al. An electron microscope for the aberration-corrected era. Ultramicroscopy 108, 179–195 (2008).

    Article  CAS  Google Scholar 

  48. Greeley, J. et al. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nature Chem. 1, 552–556 (2009).

    Article  CAS  Google Scholar 

  49. Viswanathan, V., Hansen, H. A., Rossmeisl, J. & Nørskov, J. K. Universality in oxygen reduction electrocatalysis on metal surfaces. ACS Catalysis 2, 1654–1660 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the US DOE Office of Basic Energy Sciences, Division of Chemical Sciences (FG-02-05ER15686). We also acknowledge the University of Michigan Electron Microbeam Analysis Laboratory for use of the microscopy facilities. This research is also supported as part of a user project by Oak Ridge National Laboratory (ORNL)'s Center for Nanophase Materials Sciences, which is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US DOE (J-C.I.). Finally, we acknowledge H. Xin and T. van Cleve for helpful discussions and experimental assistance.

Author information

Authors and Affiliations

Authors

Contributions

A.H. and S.L. devised and developed the project. A.H. carried out experimental work, theoretical calculations and data analysis. J-C.I. performed STEM and EELS imaging at ORNL. All the authors wrote the manuscript.

Corresponding author

Correspondence to Suljo Linic.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 5288 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holewinski, A., Idrobo, JC. & Linic, S. High-performance Ag–Co alloy catalysts for electrochemical oxygen reduction. Nature Chem 6, 828–834 (2014). https://doi.org/10.1038/nchem.2032

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2032

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing