Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Synthetic ion transporters can induce apoptosis by facilitating chloride anion transport into cells

This article has been updated

Abstract

Anion transporters based on small molecules have received attention as therapeutic agents because of their potential to disrupt cellular ion homeostasis. However, a direct correlation between a change in cellular chloride anion concentration and cytotoxicity has not been established for synthetic ion carriers. Here we show that two pyridine diamide-strapped calix[4]pyrroles induce coupled chloride anion and sodium cation transport in both liposomal models and cells, and promote cell death by increasing intracellular chloride and sodium ion concentrations. Removing either ion from the extracellular media or blocking natural sodium channels with amiloride prevents this effect. Cell experiments show that the ion transporters induce the sodium chloride influx, which leads to an increased concentration of reactive oxygen species, release of cytochrome c from the mitochondria and apoptosis via caspase activation. However, they do not activate the caspase-independent apoptotic pathway associated with the apoptosis-inducing factor. Ion transporters, therefore, represent an attractive approach for regulating cellular processes that are normally controlled tightly by homeostasis.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Structures of compounds.
Figure 2: Transport studies using liposomal model membranes.
Figure 3: Ion transporters induce apoptosis.
Figure 4: Ion transporters induce caspase activation but do not activate the AIF-associated apoptotic pathway.
Figure 5: Effect of ions on transporter-induced cell death.

Change history

  • 05 September 2014

    The authors wish to add a sentence to the Acknowledgements: "A part of this work was carried out with support from the Chemical Biology Research Center in Korea Research Institute of Bioscience and Biotechnology." This has been added in all versions of the Article.

References

  1. Yu, S. P., Canzoniero, L. M. T. & Choi, D. W. Ion homeostasis and apoptosis. Curr. Opin. Cell Biol. 13, 405–411 (2001).

    CAS  Article  Google Scholar 

  2. Okada, Y. et al. Volume-sensitive chloride channels involved in apoptotic volume decrease and cell death. J. Membr. Biol. 209, 21–29 (2006).

    CAS  Article  Google Scholar 

  3. Newmeyer, D. D. & Ferguson-Miller, S. Mitochondria: releasing power for life and unleashing the machineries of death. Cell 112, 481–490 (2003).

    CAS  Article  Google Scholar 

  4. Arcangeli, A. et al. Targeting ion channels in cancer: a novel frontier in antineoplastic therapy. Curr. Med. Chem. 16, 66–93 (2009).

    CAS  Article  Google Scholar 

  5. Lehen'kyi, V., Shapovalov, G., Skryma, R. & Prevarskaya, N. Ion channels and transporters in cancer. 5. Ion channels in control of cancer and cell apoptosis. Am. J. Physiol. Cell Physiol. 301, C1281–C1289 (2011).

    CAS  Article  Google Scholar 

  6. Becchetti, A. Ion channels and transporters in cancer. 1. Ion channels and cell proliferation in cancer. Am. J. Physiol. Cell Physiol. 301, C255–C265 (2011).

    CAS  Article  Google Scholar 

  7. Cuddapah, V. A. & Sontheimer, H. Ion channels and transporters in cancer. 2. Ion channels and the control of cancer cell migration. Am. J. Physiol. Cell Physiol. 301, C541–C549 (2011).

    CAS  Article  Google Scholar 

  8. Yu, L. et al. A protective mechanism against antibiotic-induced ototoxicity: role of prestin. PloS ONE 6, e17322 (2011).

    CAS  Article  Google Scholar 

  9. Tsukimoto, M., Harada, H., Ikari, A. & Takagi, K. Involvement of chloride in apoptotic cell death induced by activation of ATP-sensitive P2X7 purinoceptor. J. Biol. Chem. 280, 2653–2658 (2005).

    CAS  Article  Google Scholar 

  10. Lee, J. M., Davis, F. M., Roberts-Thomson S. J. & Monteith, G. R. Ion channels and transporters in cancer. 4. Remodeling of Ca2+ signaling in tumorigenesis: role of Ca2+ transport. Am. J. Physiol. Cell Physiol. 301, C969–C976 (2011).

    CAS  Article  Google Scholar 

  11. Remillard, C. V. & Yuan, J. X-J. Activation of K+ channels: an essential pathway in programmed cell death. Am. J. Physiol. Lung Cell Mol. Physiol. 286, L49–L67 (2004).

    CAS  Article  Google Scholar 

  12. Gupta, P. B. et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138, 645–659 (2009).

    CAS  Article  Google Scholar 

  13. Ding, W-Q., Liu, B., Vaught, J. L., Yamauchi, H. & Lind, S. E. Anticancer activity of the antibiotic clioquinol. Cancer Res. 65, 3389–3395 (2005).

    CAS  Article  Google Scholar 

  14. Fürstner, A. Chemistry and biology of roseophilin and the prodigiosin alkaloids: a survey of the last 2500 years. Angew. Chem. Int. Ed. 42, 3582–3603 (2003).

    Article  Google Scholar 

  15. Busschaert, N. et al. Structure–activity relationships in tripodal transmembrane anion transporters: the effect of fluorination. J. Am. Chem. Soc. 133, 14136–14148 (2011).

    CAS  Article  Google Scholar 

  16. Busschaert, N. et al. Towards predictable transmembrane transport: QSAR analysis of anion binding and transport. Chem. Sci. 4, 3036–3045 (2013).

    CAS  Article  Google Scholar 

  17. Shen, B., Li, X., Wang, F., Yao, X. & Yang, D. A synthetic chloride channel restores chloride conductance in human cystic fibrosis epithelial cells. PLoS ONE 7, e34694 (2012).

    CAS  Article  Google Scholar 

  18. Sato, T. et al. Prodigiosins as a new group of H+/Cl symporters that uncouple proton translocators. J. Biol. Chem. 273, 21455–21462 (1998).

    CAS  Article  Google Scholar 

  19. Sessler, J. L. et al. Synthesis, anion-binding properties, and in vitro anticancer activity of prodigiosin analogues. Angew. Chem. Int. Ed. 44, 5989–5992 (2005).

    CAS  Article  Google Scholar 

  20. Gale, P. A. et al. Co-transport of H+/Cl by a synthetic prodigiosin mimic. Chem. Commun. 30, 3773–3775 (2005).

    Article  Google Scholar 

  21. Pérez-Tomás, R., Montaner, B., Llagostera, E. & Soto-Cerrato, V. The prodigiosins, proapoptotic drugs with anticancer properties. Biochem. Pharmacol. 66, 1447–1452 (2003).

    Article  Google Scholar 

  22. Melvin, M. S. et al. Double-strand DNA cleavage by copper prodigiosin. J. Am. Chem. Soc. 122, 6333–6334 (2000).

    CAS  Article  Google Scholar 

  23. Soto-Cerrato, V., Viñals, F., Lambert, J. R. & Pérez-Tomás, R. The anticancer agent prodigiosin induces 21(WAF1/C1P1) expression via transforming growth factor-beta receptor pathway. Biochem. Pharmacol. 74, 1340–1349 (2007).

    CAS  Article  Google Scholar 

  24. Davis, A. P., Sheppard, D. N. & Smith, B. D. Development of synthetic membrane transporters for anions. Chem. Soc. Rev. 36, 348–357 (2007).

    CAS  Article  Google Scholar 

  25. Davis, J. T., Okunola, O. & Quesada, R. Recent advances in the transmembrane transport of anions. Chem. Soc. Rev. 39, 3843–3862 (2010).

    CAS  Article  Google Scholar 

  26. Gale, P. A. From anion receptors to transporters. Acc. Chem. Res. 44, 216–226 (2011).

    CAS  Article  Google Scholar 

  27. Díaz de Greñu, B. et al. Synthetic prodiginine obatoclax (GX15-070) and related analogues: anion binding, transmembrane transport, and cytotoxicity properties. Chem. Eur. J. 17, 14074–14083 (2011).

    Article  Google Scholar 

  28. Moore, S. J. et al. Towards ‘drug-like’ indole-based transmembrane anion transporters. Chem. Sci. 3, 2501–2509 (2012).

    CAS  Article  Google Scholar 

  29. Li, X., Shen, B., Yao, X-Q. & Yang, D. Synthetic chloride channel regulates cell membrane potentials and voltage-gated calcium channels. J. Am. Chem. Soc. 131, 13676–13680 (2009).

    CAS  Article  Google Scholar 

  30. Gould, D. Human physiology. From cells to systems, 3rd edition. J. Adv. Nurs. 28, 680–682 (1998).

    Article  Google Scholar 

  31. Russell, J. M. Sodium–potassium–chloride cotransport. Physiol. Rev. 80, 211–276 (2000).

    CAS  Article  Google Scholar 

  32. Moore, S. J., Fisher, M. G., Yano, M., Tong, C. C. & Gale, P. A. A dual host approach to transmembrane transport of salts. Chem. Commun. 47, 689–691 (2011).

    CAS  Article  Google Scholar 

  33. Yoon, D-W., Hwang, H. & Lee, C-H. Synthesis of a strapped calix[4]pyrrole: structure and anion binding properties. Angew. Chem. Int. Ed. 41, 1757–1759 (2002).

    CAS  Article  Google Scholar 

  34. Lee, C-H., Miyaji, H., Yoon, D-W. & Sessler, J. L. Strapped and other topographically nonplanar calixpyrrole analogues. Improved anion receptors. Chem. Commun. 24–34 (2008).

  35. Custelcean, R. et al. Calix[4]pyrrole: an old yet new ion-pair receptor. Angew. Chem. Int. Ed. 44, 2537–2542 (2005).

    CAS  Article  Google Scholar 

  36. Delort, A-M., Gaudet, G. & Forano E. Environmental Microbiology: Methods and Protocols (eds Spencer, J. F. T. & Ragout de Spencer, A. L.) 389–405 (Humana Press, 2004).

    Book  Google Scholar 

  37. Jayaraman, S., Haggie, P., Wachter, R. M., Remington, S. J. & Verkman, A. S. Mechanism and cellular applications of a green fluorescent protein-based halide sensor. J. Biol. Chem. 275, 6047–6050 (2000).

    CAS  Article  Google Scholar 

  38. Minta A. & Tsien R. Y. Fluorescent indicators for cytosolic sodium. J. Biol. Chem. 264, 19449–19457 (1989).

    CAS  PubMed  Google Scholar 

  39. Meuwis, K., Boens, N., De Schryver, F. C., Gallay, J. & Vincent, M. Photophysics of the fluorescent K+ indicator PBFI. Biophys. J. 68, 2469–2473 (1995).

    CAS  Article  Google Scholar 

  40. Gee, K. R. et al. Chemical and physiological characterization of fluo-4 Ca2+-indicator dyes. Cell Calcium 27, 97–106 (2000).

    CAS  Article  Google Scholar 

  41. Williams, D. R., Ko, S-K., Park, S., Lee, M-R. & Shin, I. An apoptosis-inducing small molecule that binds to heat shock protein 70. Angew. Chem. Int. Ed. 47, 7466–7469 (2008).

    CAS  Article  Google Scholar 

  42. Salvioli, S., Ardizzoni, A., Franceschi, C. & Cossarizza, A. JC-1, but not DiOC6(3) or rhodamine 123, is a reliable fluorescent probe to assess ΔΨ changes in intact cells: implications for studies on mitochondrial functionality during apoptosis. FEBS Lett. 411, 77–82 (1997).

    CAS  Article  Google Scholar 

  43. Elmore, S. Apoptosis: a review of programmed cell death. Toxicol. Pathol. 25, 495–516 (2007).

    Article  Google Scholar 

  44. Li, P. et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479–489 (1997).

    CAS  Article  Google Scholar 

  45. Joza, N. et al. Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 410, 549–554 (2001).

    CAS  Article  Google Scholar 

  46. Bortner, C. D. & Cidlowski, J. A. Uncoupling cell shrinkage from apoptosis reveals that Na+ influx is required for volume loss during programmed cell death. J. Biol. Chem. 278, 39176–39184 (2003).

    CAS  Article  Google Scholar 

  47. Ko, S-K. & Shin, I. Cardiosulfa induces heart deformation in zebrafish through the AhR-mediated, CYP1A-independent pathway. ChemBioChem 13, 1483–1489 (2012).

    CAS  Article  Google Scholar 

  48. Han, J. & Burgess, K. Fluorescent indicators for intracellular pH. Chem. Rev. 110, 2709–2728 (2010).

    CAS  Article  Google Scholar 

  49. Cho, H. J. et al. A small molecule that binds to an ATPase domain of Hsc70 promotes membrane trafficking of mutant cystic fibrosis transmembrane conductance regulator. J. Am. Chem. Soc. 133, 20267–20276 (2011).

    CAS  Article  Google Scholar 

  50. Circu, M. L. & Aw, T. Y. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic. Biol. Med. 48, 749–762 (2010).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Creative Research Initiative (grant no. 2010-0018272 to I.S.) program in Korea, as well as by the Office of Basic Energy Sciences, US Department of Energy (grant no. DE-FG02-01ER15186 to J.L.S.). P.A.G. thanks the Engineering and Physical Sciences Research Council for a postdoctoral fellowship (N.B.) (EP/J009687/1). W.VR. and P.A.G. thank the European Union for a Marie Curie Career Integration grant. A part of this work was carried out with support from the Chemical Biology Research Center in Korea Research Institute of Bioscience and Biotechnology.

Author information

Authors and Affiliations

Authors

Contributions

J.L.S, I.S. and P.A.G. designed the study and supervised the work. S-K.K. performed biological studies. S.K.K. designed and synthesized compounds and performed ion-binding studies in solution. S.K.K. and V.M.L. carried out the X-ray single-crystal structure analysis. P.A.G., W.VR., N.B. and A.S. designed and performed the ion-transport studies in liposomes. J.P. and W.N. carried out ion-transport activity studies in cells.

Corresponding authors

Correspondence to Philip A. Gale, Jonathan L. Sessler or Injae Shin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 10471 kb)

Supplementary information

Crystallographic data for 1·CsCl (CIF 1298 kb)

Supplementary information

Crystallographic data for 12·NaCl·TMACl·(CH3OH)2·(H2O)2 (CIF 1601 kb)

Supplementary information

Crystallographic data for 2·CsCl (CIF 1206 kb)

Supplementary information

Crystallographic data for 22·NaCl·TMACl·(H2O)5·C6H14 (CIF 2987 kb)

Supplementary information

Crystallographic data for 2·TEACl (CIF 39 kb)

Supplementary information

Crystallographic data for 1·(CH3OH)2 (CIF 29 kb)

Supplementary information

Crystallographic data for 3·(CH3OH)2 (CIF 29 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ko, SK., Kim, S., Share, A. et al. Synthetic ion transporters can induce apoptosis by facilitating chloride anion transport into cells. Nature Chem 6, 885–892 (2014). https://doi.org/10.1038/nchem.2021

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2021

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing