Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synthesis of hydroxyphthioceranic acid using a traceless lithiation–borylation–protodeboronation strategy

Abstract

In planning organic syntheses, disconnections are most often made adjacent to functional groups, which assist in C–C bond formation. For molecules devoid of obvious functional groups this approach presents a problem, and so functionalities must be installed temporarily and then removed. Here we present a traceless strategy for organic synthesis that uses a boronic ester as such a group in a one-pot lithiation–borylation–protodeboronation sequence. To realize this strategy, we developed a methodology for the protodeboronation of alkyl pinacol boronic esters that involves the formation of a boronate complex with a nucleophile followed by oxidation with Mn(OAc)3 in the presence of the hydrogen-atom donor 4-tert-butylcatechol. Iterative lithiation–borylation–protodeboronation allows the coupling of smaller fragments to build-up long alkyl chains. We employed this strategy in the synthesis of hydroxyphthioceranic acid, a key component of the cell-wall lipid of the virulent Mycobacterium tuberculosis, in just 14 steps (longest linear sequence) with full stereocontrol.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Complex molecules with limited functionality present in nature and the potential traceless strategy for their synthesis.
Figure 2: Brief survey of the scope and mechanism of the protodeboronation reaction.
Figure 3: Complex molecules of interest in this study associated with the cell-wall lipid of MTB.
Figure 4: Synthesis of building blocks 13 and 14 used in the synthesis of hydroxyphthioceranic acid 10.
Figure 5: Total synthesis of hydroxyphthioceranic acid 10.

Similar content being viewed by others

References

  1. Damsté, J. S. S., Schouten, S., Hopmans, E. C., Duin, A. C. T. v. & Geenevasen, J. A. J. Crenarchaeol the characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic Crenarchaeota. J. Lipid Res. 43, 1641–1651 (2002).

    Article  Google Scholar 

  2. Stymiest, J., Dutheuil, G., Mahmood, A. & Aggarwal, V. Lithiated carbamates: chiral carbenoids for iterative homologation of boranes and boronic esters. Angew. Chem. Int. Ed. 46, 7491–7494 (2007).

    Article  CAS  Google Scholar 

  3. Stymiest, J. L., Bagutski, V., French, R. M. & Aggarwal, V. K. Enantiodivergent conversion of chiral secondary alcohols into tertiary alcohols. Nature 456, 778–782 (2008).

    Article  CAS  Google Scholar 

  4. Scott, H. K. & Aggarwal, V. K. Highly enantioselective synthesis of tertiary boronic esters and their stereospecific conversion to other functional groups and quaternary stereocentres. Chem. Eur. J. 17, 13124–13132 (2011).

    Article  CAS  Google Scholar 

  5. Barluenga, J., Tomás-Gamasa, M., Aznar, F. & Valdés, C. Metal-free carbon–carbon bond-forming reductive coupling between boronic acids and tosylhydrazones. Nature Chem. 1, 494–499 (2009).

    Article  CAS  Google Scholar 

  6. Myers, A. G. & Movassaghi, M. Highly efficient methodology for the reductive coupling of aldehyde tosylhydrazones with alkyllithium reagents. J. Am. Chem. Soc. 120, 8891–8892 (1998).

    Article  CAS  Google Scholar 

  7. Shao, Z. & Zhang, H. N-Tosylhydrazones: versatile reagents for metal-catalyzed and metal-free cross-coupling reactions. Chem. Soc. Rev. 41, 560–572 (2012).

    Article  CAS  Google Scholar 

  8. Mundal, D. A., Avetta C. T. Jr & Thomson, R. J. Triflimide-catalysed sigmatropic rearrangement of N-allylhydrazones as an example of a traceless bond construction. Nature Chem. 2, 294–297 (2010).

    Article  CAS  Google Scholar 

  9. Nave, S., Sonawane, R., Elford, T. & Aggarwal, V. Protodeboronation of tertiary boronic esters: asymmetric synthesis of tertiary alkyl stereogenic centers. J. Am. Chem. Soc. 132, 17096–17098 (2010).

    Article  CAS  Google Scholar 

  10. Roesner, S. & Aggarwal, V. K. Enantioselective synthesis of (R)-tolterodine using lithiation/borylation–protodeboronation methodology. Can. J. Chem. 90, 965–974 (2012).

    Article  CAS  Google Scholar 

  11. Elford, T. G., Nave, S., Sonawane, R. P. & Aggarwal, V. K. Total synthesis of (+)-erogorgiaene using lithiation–borylation methodology, and stereoselective synthesis of each of its diastereoisomers. J. Am. Chem. Soc. 133, 16798–16801 (2011).

    Article  CAS  Google Scholar 

  12. Roesner, S., Casatejada, J. M., Elford, T. G., Sonawane, R. P. & Aggarwal, V. K. Enantioselective syntheses of (+)-sertraline and (+)-indatraline using lithiation/borylation–protodeboronation methodology. Org. Lett. 13, 5740–5743 (2011).

    Article  CAS  Google Scholar 

  13. Pozzi, D., Scanlan, E. M. & Renaud, P. A mild radical procedure for the reduction of B-alkylcatecholboranes to alkanes. J. Am. Chem. Soc 127, 14204–14205 (2005).

    Article  CAS  Google Scholar 

  14. Villa, G., Povie, G. & Renaud, P. Radical chain reduction of alkylboron compounds with catechols. J. Am. Chem. Soc. 133, 5913–5920 (2011).

    Article  CAS  Google Scholar 

  15. Brown, H. C. & Murray, K. J. Organoboranes for synthesis. 1: Protonolysis of trialkylboranes. A convenient non-catalytic conversion of alkenes into saturated compounds via hydroboration–protonolysis. Tetrahedron 42, 5497–5504 (1986).

    Article  CAS  Google Scholar 

  16. Hesse, M. J., Butts, C. P., Willis, C. L. & Aggarwal, V. K. Diastereodivergent synthesis of trisubstituted alkenes through protodeboronation of allylic boronic esters: application to the synthesis of the Californian red scale beetle pheromone. Angew. Chem. Int. Ed. 51, 12444–12448 (2012).

    Article  CAS  Google Scholar 

  17. Larouche-Gauthier, R., Elford, T. & Aggarwal, V. Ate complexes of secondary boronic esters as chiral organometallic-type nucleophiles for asymmetric synthesis. J. Am. Chem. Soc. 133, 16794–16797 (2011).

    Article  CAS  Google Scholar 

  18. Sorin, G. et al. Oxidation of alkyl trifluoroborates: an opportunity for tin-free radical chemistry. Angew. Chem. Int. Ed. 49, 8721–8723 (2010).

    Article  CAS  Google Scholar 

  19. Liu, K. E., Johnson, C. C., Newcomb, M. & Lippard, S. J. Radical clock substrate probes and kinetic isotope effect studies of the hydroxylation of hydrocarbons by methane monooxygenase. J. Am. Chem. Soc. 115, 939–947 (1993).

    Article  CAS  Google Scholar 

  20. World Health Organization. WHO Global Tuberculosis Report – Executive Summary (2013). www.who.int/tb/publications/factsheet_global.pdf

  21. World Health Organization. WHO Fact Sheets on Tuberculosis (2009). www.who.int/tb/publications/2009/tbfactsheet_2009update_one_page.pdf

  22. Zhang, L., Goren, M. B., Holzer, T. J. & Andersen, B. R. Effect of Mycobacterium tuberculosis-derived sulfolipid I on human phagocytic cells. Infect. Immun. 56, 2876–2883 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Glickman, M. S. & Jacobs, W. R. Jr. Microbial pathogenesis of Mycobacterium tuberculosis: dawn of a discipline. Cell 104, 477–485 (2001).

    Article  CAS  Google Scholar 

  24. Converse, S. E. et al. MmpL8 is required for sulfolipid-1 biosynthesis and Mycobacterium tuberculosis virulence. Proc. Natl Acad. Sci. USA 100, 6121–6126 (2003).

    Article  CAS  Google Scholar 

  25. Goren, M. B., Brokl, O., Das, B. C. & Lederer, E. Sulfolipid I of Mycobacterium tuberculosis, strain H37RV. Nature of the acyl substituents. Biochemistry 10, 72–81 (1971).

    Article  CAS  Google Scholar 

  26. Goren, M. B., Brokl, O., Roller, P., Fales, H. M. & Das, B. C. Sulfatides of Mycobacterium tuberculosis: the structure of the principal sulfatide (SL-I). Biochemistry 15, 2728–2735 (1976).

    Article  CAS  Google Scholar 

  27. Young, D. & Dye, C. The development and impact of tuberculosis vaccines. Cell 124, 683–687 (2006).

    Article  CAS  Google Scholar 

  28. Geerdink, D. et al. Total synthesis, stereochemical elucidation and biological evaluation of Ac2SGL; a 1,3-methyl branched sulfoglycolipid from Mycobacterium tuberculosis. Chem. Sci. 4, 709–716 (2013).

    Article  CAS  Google Scholar 

  29. López, F., Minnaard, A. J. & Feringa, B. L. Catalytic enantioselective conjugate addition with Grignard reagents. Acc. Chem. Res. 40, 179–188 (2007).

    Article  Google Scholar 

  30. Bjorn, T. H., Feringa, B. L. & Minnaard, A. J. Catalytic asymmetric synthesis of phthioceranic acid, a heptamethyl-branched acid from Mycobacterium tuberculosis. Org. Lett. 9, 3013–3015 (2007).

    Article  Google Scholar 

  31. Geerdink, D. & Minnaard, A. J. Total synthesis of sulfolipid-1. Chem. Commun. 50, 2286–2288 (2014).

    Article  CAS  Google Scholar 

  32. Pischl, M. C., Weise, C. F., Müller, M-A., Pfaltz, A. & Schneider, C. A convergent and stereoselective synthesis of the glycolipid components phthioceranic acid and hydroxyphthioceranic acid. Angew. Chem. Int. Ed. 52, 8968–8972 (2013).

    Article  CAS  Google Scholar 

  33. Wang, Y. F., Chen, C. S., Girdaukas, G. & Sih, C. J. Bifunctional chiral synthons via biochemical methods. III. Optical purity enhancement in enzymic asymmetric catalysis. J. Am. Chem. Soc. 106, 3695–3696 (1984).

    Article  CAS  Google Scholar 

  34. Schmidt, Y. et al. Enantioselective total synthesis of the unnatural and the natural stereoisomers of vittatalactone. J. Org. Chem. 75, 4424–4433 (2010).

    Article  CAS  Google Scholar 

  35. Tsuji, K., Terao, Y. & Achiwa, K. Lipase-catalyzed asymmetric synthesis of chiral 1,3-propanediols and its application to the preparation of optically pure building block for renin inhibitors. Tetrahedron Lett. 30, 6189–6192 (1989).

    Article  CAS  Google Scholar 

  36. Roesner, S. et al. Stereospecific conversion of alcohols into pinacol boronic esters using lithiation–borylation methodology with pinacolborane. Chem. Commun. 50, 4053–4055 (2014).

    Article  CAS  Google Scholar 

  37. Dearden, M. J., Firkin, C. R., Hermet, J-P. R. & O'Brien, P. A readily-accessible (+)-sparteine surrogate. J. Am. Chem. Soc. 124, 11870–11871 (2002).

    Article  CAS  Google Scholar 

  38. Dixon, A. J., Mcgrath, M. J. & O'Brien, P. Synthesis of (+)-(1R,2S,9S)-11-methyl-7,11-diazatricyclo[7.3.1.0]tridecane, a (+)-sparteine surrogate. Org. Synth. 83, 141–154 (2006).

    Article  CAS  Google Scholar 

  39. Testa, M. L. et al. Oxidation of amino diols mediated by homogeneous and heterogeneous TEMPO. Adv. Synth. Catal. 346, 655–660 (2004).

    Article  CAS  Google Scholar 

  40. Inokuchi, T., Matsumoto, S., Nishiyama, T. & Torii, S. A selective and efficient method for alcohol oxidations mediated by N-oxoammonium salts in combination with sodium bromite. J. Org. Chem. 55, 462–466 (1990).

    Article  CAS  Google Scholar 

  41. Zhao, M. M., Li, J., Mano, E., Song, Z. J. & Tschaen, D. M. Oxidation of primary alcohols to carboxylic acids with sodium chlorite catalyzed by TEMPO and bleach: 4-methoxyphenylacetic acid. Org. Synth. 81, 195–203 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Engineering and Physical Science Research Council (EP/I038071/1) and the European Research Council (FP7/2007-2013, ERC grant no. 246785) for financial support. R.R. thanks the Marie Curie Fellowship program (EC FP7, No 329578). We thank A. Scott for technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

V.K.A. conceived the project and wrote the manuscript with R.R. R.R planned and carried out the experiments. R.R. and V.K.A. discussed the experiments and results.

Corresponding author

Correspondence to Varinder K. Aggarwal.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 14532 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasappan, R., Aggarwal, V. Synthesis of hydroxyphthioceranic acid using a traceless lithiation–borylation–protodeboronation strategy. Nature Chem 6, 810–814 (2014). https://doi.org/10.1038/nchem.2010

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2010

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing