Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Harnessing redox activity for the formation of uranium tris(imido) compounds

Abstract

Classically, late transition-metal organometallic compounds promote multielectron processes solely through the change in oxidation state of the metal centre. In contrast, uranium typically undergoes single-electron chemistry. However, using redox-active ligands can engage multielectron reactivity at this metal in analogy to transition metals. Here we show that a redox-flexible pyridine(diimine) ligand can stabilize a series of highly reduced uranium coordination complexes by storing one, two or three electrons in the ligand. These species reduce organoazides easily to form uranium–nitrogen multiple bonds with the release of dinitrogen. The extent of ligand reduction dictates the formation of uranium mono-, bis- and tris(imido) products. Spectroscopic and structural characterization of these compounds supports the idea that electrons are stored in the ligand framework and used in subsequent reactivity. Computational analyses of the uranium imido products probed their molecular and electronic structures, which facilitated a comparison between the bonding in the tris(imido) structure and its tris(oxo) analogue.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis of compounds 1–7.
Figure 2: The molecular structures of complexes 2 through 7 with ellipsoids depicted at 30% probability, as determined by X-ray crystallography.
Figure 3: Visualization of the valence molecular orbitals of 7.
Figure 4: Visualization of the valence molecular orbitals of the trans-O–U–O unit of hypothetical tris-oxo uranium (9).

Similar content being viewed by others

References

  1. Kaim, W. The shrinking world of innocent ligands: conventional and non-conventional redox-active ligands. Eur. J. Inorg. Chem. 2012, 343–348 (2012).

    Article  CAS  Google Scholar 

  2. Lyaskovskyy, V. & de Bruin, B. Redox non-innocent ligands: versatile new tools to control catalytic reactions. ACS Catal. 2, 270–279 (2012).

    Article  CAS  Google Scholar 

  3. Chirik, P. J. Preface: forum on redox-active ligands. Inorg. Chem. 50, 9737–9740 (2011).

    Article  CAS  Google Scholar 

  4. Chirik, P. J. & Wieghardt, K. Radical ligands confer nobility on base-metal catalysts. Science 327, 794–795 (2010).

    Article  CAS  Google Scholar 

  5. Munha, R. F., Zarkesh, R. A. & Heyduk, A. F. Group transfer reactions of d0 transition metal complexes: redox-active ligands provide a mechanism for expanded reactivity. Dalton Trans. 42, 3751–3766 (2013).

    Article  CAS  Google Scholar 

  6. Bouwkamp, M. W., Bowman, A. C., Lobkovsky, E. & Chirik, P. J. Iron-catalyzed [2π+2π] cycloaddition of α,ω-dienes: the importance of redox-active supporting ligands. J. Am. Chem. Soc. 128, 13340–13341 (2006).

    Article  CAS  Google Scholar 

  7. Bart, S. C. et al. Electronic structure of bis(imino)pyridine iron dichloride, monochloride, and neutral ligand complexes: a combined structural, spectroscopic, and computational study. J. Am. Chem. Soc. 128, 13901–13912 (2006).

    Article  CAS  Google Scholar 

  8. Cladis, D. P., Kiernicki, J. J., Fanwick, P. E. & Bart, S. C. Multi-electron reduction facilitated by a trianionic pyridine(diimine) ligand. Chem. Commun. 49, 4169–4171 (2013).

    Article  CAS  Google Scholar 

  9. Morrison, D. L. et al. Intra- vs. intermolecular α-hydrogen abstraction in the generation of multiple imido complexes: synthesis, reactivity, and structural studies of the d0 tris(imido) functional group of tungsten. Organometallics 14, 2435–2446 (1995).

    Article  CAS  Google Scholar 

  10. Schwarz, A. D., Nielson, A. J., Kaltsoyannis, N. & Mountford, P. The first group 4 metal bis(imido) and tris(imido) complexes. Chem. Sci. 3, 819–824 (2012).

    Article  CAS  Google Scholar 

  11. Smith, D. P., Allen, K. D., Carducci, M. D. & Wigley, D. E. Tris(phenylimido) complexes of niobium and tantalum: preparation and properties of the d0 [M(=NR)3]− (M=Nb, Ta) functional group. Inorg. Chem. 31, 1319–1320 (1992).

    Article  CAS  Google Scholar 

  12. Castro-Rodriguez, I., Nakai, H., Zakharov, L. N., Rheingold, A. L. & Meyer, K. A linear, O-coordinated η1-CO2 bound to uranium. Science 305, 1757–1760 (2004).

    Article  CAS  Google Scholar 

  13. Lam, O. P., Anthon, C., Heinemann, F. W., O'Connor, J. M. & Meyer, K. Structural and spectroscopic characterization of a charge-separated uranium benzophenone ketyl radical complex. J. Am. Chem. Soc. 130, 6567–6576 (2008).

    Article  CAS  Google Scholar 

  14. Lam, O. P., Feng, P. L., Heinemann, F. W., O'Connor, J. M. & Meyer, K. Charge-separation in uranium diazomethane complexes leading to C–H activation and chemical transformation. J. Am. Chem. Soc. 130, 2806–2816 (2008).

    Article  CAS  Google Scholar 

  15. Budzelaar, P. H. M., de Bruin, B., Gal, A. W., Wieghardt, K. & van Lenthe, J. H. Metal-to-ligand electron transfer in diiminopyridine complexes of Mn–Zn. A theoretical study. Inorg. Chem. 40, 4649–4655 (2001).

    Article  CAS  Google Scholar 

  16. Enright, D., Gambarotta, S., Yap, G. P. A. & Budzelaar, P. H. M. The ability of the α,α′-diiminopyridine ligand system to accept negative charge: isolation of paramagnetic and diamagnetic trianions. Angew. Chem. Int. Ed. 41, 3873–3876 (2002).

    Article  CAS  Google Scholar 

  17. Knijnenburg, Q., Gambarotta, S. & Budzelaar, P. H. M. Ligand-centred reactivity in diiminepyridine complexes. Dalton Trans., 5442–5448 (2006).

  18. Kiernicki, J. J. et al. Multielectron C–O bond activation mediated by a family of reduced uranium complexes. Inorg. Chem. 53, 3730–3741 (2014).

    Article  CAS  Google Scholar 

  19. Tondreau, A. M. et al. Oxidation and reduction of bis(imino)pyridine iron dinitrogen complexes: evidence for formation of a chelate trianion. Inorg. Chem. 52, 635–646 (2013).

    Article  CAS  Google Scholar 

  20. Diaconescu, P. L., Arnold, P. L., Baker, T. A., Mindiola, D. J. & Cummins, C. C. Arene-bridged diuranium complexes: inverted sandwiches supported by δ backbonding. J. Am. Chem. Soc. 122, 6108–6109 (2000).

    Article  CAS  Google Scholar 

  21. Vlaisavljevich, B., Diaconescu, P. L., Lukens, W. L. Jr, Gagliardi, L. & Cummins, C. C. Investigations of the electronic structure of arene-bridged diuranium complexes. Organometallics 32, 1341–1352 (2013).

    Article  CAS  Google Scholar 

  22. Mills, D. P. et al. A delocalized arene-bridged diuranium single-molecule magnet. Nature Chem. 3, 454–460 (2011).

    Article  CAS  Google Scholar 

  23. Arnold, P. L., Mansell, S. M., Maron, L. & McKay, D. Spontaneous reduction and C–H borylation of arenes mediated by uranium(III) disproportionation. Nature Chem. 4, 668–674 (2012).

    Article  CAS  Google Scholar 

  24. Bart, S. C., Heinemann, F. W., Anthon, C., Hauser, C. & Meyer, K. A new tripodal ligand system with steric and electronic modularity for uranium coordination chemistry. Inorg. Chem. 48, 9419–9426 (2009).

    Article  CAS  Google Scholar 

  25. Evans, W. J., Kozimor, S. A., Ziller, J. W. & Kaltsoyannis, N. Structure, reactivity, and density functional theory analysis of the six-electron reductant, [(C5Me5)2U]2(μ-η6: η6-C6H6), synthesized via a new mode of (C5Me5)3M reactivity. J. Am. Chem. Soc. 126, 14533–14547 (2004).

    Article  CAS  Google Scholar 

  26. Scott, J. et al. Formation of a paramagnetic Al complex and extrusion of Fe during the reaction of (diiminepyridine)Fe with AlR3 (R=Me, Et). J. Am. Chem. Soc. 127, 17204–17206 (2005).

    Article  CAS  Google Scholar 

  27. Matson, E. M., Crestani, M. G., Fanwick, P. E. & Bart, S. C. Synthesis of U(IV) imidos from Tp*2U(CH2Ph) (Tp*=hydrotris(3,5-dimethylpyrazolyl)borate) by extrusion of bibenzyl. Dalton Trans. 41, 7952–7958 (2012).

    Article  CAS  Google Scholar 

  28. Spencer, L. P., Yang, P., Scott, B. L., Batista, E. R. & Boncella, J. M. Oxidative addition to U(V)–U(V) dimers: facile routes to uranium(VI) bis(imido) complexes. Inorg. Chem. 48, 11615–11623 (2009).

    Article  CAS  Google Scholar 

  29. Jilek, R. E. et al. A direct route to bis(imido)uranium(V) halides via metathesis of uranium tetrachloride. J. Am. Chem. Soc. 134, 9876–9878 (2012).

    Article  CAS  Google Scholar 

  30. O'Grady, E. & Kaltsoyannis, N. On the inverse trans influence. Density functional studies of [MOX5]n− (M = Pa, n = 2; M = U, n = 1; M = Np, n = 0; X = F, Cl or Br). J. Chem. Soc. Dalton Trans. 1233–1239 (2002).

  31. Kosog, B., La Pierre, H. S., Heinemann, F. W., Liddle, S. T. & Meyer, K. Synthesis of uranium(VI) terminal oxo complexes: molecular geometry driven by the inverse trans-influence. J. Am. Chem. Soc. 134, 5284–5289 (2012).

    Article  CAS  Google Scholar 

  32. Lewis, A. J., Carroll, P. J. & Schelter, E. J. Stable uranium(VI) methyl and acetylide complexes and the elucidation of an inverse trans influence ligand series. J. Am. Chem. Soc. 135, 13185–13192 (2013).

    Article  CAS  Google Scholar 

  33. Denning, R. G., Electronic structure and bonding in actinyl ions in Complexes, Clusters and Crystal Chemistry (ed. Clarke, M. J.) 215–276 (in Structure and Bonding Series 79, Springer Berlin Heidelberg, 1992).

    Google Scholar 

  34. Larsson, S. & Pyykkö, P. Relativistically parameterized extended Hückel calculations. IX. An iterative version with applications to some xenon, thorium and uranium compounds. Chem. Phys. 101, 355–369 (1986).

    Article  CAS  Google Scholar 

  35. Hayton, T. W. et al. Synthesis of imido analogs of the uranyl ion. Science 310, 1941–1943 (2005).

    Article  CAS  Google Scholar 

  36. Warner, B. P., Scott, B. L. & Burns, C. J. A simple preparative route to bis(imido)uranium(VI) complexes by the direct reductions of diazenes and azides. Angew. Chem. Int. Ed. 37, 959–960 (1998).

    Article  CAS  Google Scholar 

  37. Evans, W. J., Kozimor, S. A. & Ziller, J. W. [(C5Me5)2U][(μ-Ph)2BPh2] as a four electron reductant. Chem. Commun. 4681–4683 (2005).

  38. Benson, M. T., Bryan, J. C., Burrell, A. K. & Cundari, T. R. Bonding and structure of heavily π loaded complexes. Inorg. Chem. 34, 2348–2355 (1995).

    Article  CAS  Google Scholar 

  39. Nalewajski, R. F., Mrozek, J. & Mazur, G. Quantum chemical valence indices from the one-determinantal difference approach. Can. J. Chem. Rev. Can. Chim. 74, 1121–1130 (1996).

    Article  CAS  Google Scholar 

  40. Clark, D. L. et al. Chemical speciation of the uranyl ion under highly alkaline conditions. Synthesis, structures, and oxo ligand exchange dynamics. Inorg. Chem. 38, 1456–1466 (1999).

    Article  CAS  Google Scholar 

  41. Ingram, K. I. M., Haeller, L. J. L. & Kaltsoyannis, N. Density functional theory investigation of the geometric and electronic structures of [UO2(H2O)m(OH)n]2–n (n + m = 5). Dalton Trans. 2403–2414 (2006).

  42. Odoh, S. O., Govind, N., Schreckenbach, G. & de Jong, W. A. Cation–cation interactions in [(UO2)2(OH)n]4–n complexes. Inorg. Chem. 52, 11269–11279 (2013).

    Article  CAS  Google Scholar 

  43. Bader, R. Atoms in Molecules: A Quantum Theory (Oxford University Press, 1990).

    Google Scholar 

  44. Mountain, A. R. E. & Kaltsoyannis, N. Do QTAIM metrics correlate with the strength of heavy element-ligand bonds? Dalton Trans. 42, 13477–13486 (2013).

    Article  CAS  Google Scholar 

  45. Domagala, M. & Grabowski, S. J. C–H–N and C–H–S hydrogen bonds: influence of hybridization on their strength. J. Phys. Chem. A 109, 5683–5688 (2005).

    Article  CAS  Google Scholar 

  46. Grabowski, S. J., Sokalski, W. A. & Leszczynski, J. How short can the H–H intermolecular contact be? New findings that reveal the covalent nature of extremely strong interactions. J. Phys. Chem. A 109, 4331–4341 (2005).

    Article  CAS  Google Scholar 

  47. Bankiewicz, B., Matczak, P. & Palusiak, M. Electron density characteristics in bond critical point (QTAIM) versus interaction energy components (SAPT): the case of charge-assisted hydrogen bonding. J. Phys. Chem. A 116, 452–459 (2012).

    Article  CAS  Google Scholar 

  48. Gopinathan, M. S., Jug, K. & Valency, I. A quantum chemical definition and properties. Theor. Chim. Acta 63, 497–509 (1983).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the US Department of Energy through Grants DE-AC02-12ER16328 (S.C.B.) and USDOE/DESC002183 (L.G. and S.O.O.). E.J.S. gratefully acknowledges the National Science Foundation (CHE 1362854) for support. The Laboratory Directed Research and Development program of the Lawrence Livermore National Laboratory is acknowledged for support to J.R.W. S.C.B. and E.J.S. are Cottrell Scholars funded by the Research Corporation.

Author information

Authors and Affiliations

Authors

Contributions

N.H.A. and S.C.B. conceived and designed the experiments. N.H.A. synthesized all the compounds. S.O.O., Y.Y., M.D.G., J.R.W. and L.G. performed the computations. U.J.W., A.J.L. and E.J.S. performed and interpreted the SQUID magnetometry. N.H.A., B.A.S., J.J.K. and P.E.F. performed the crystallographic analysis. N.H.A., S.O.O., E.J.S. and S.C.B. co-wrote the manuscript.

Corresponding author

Correspondence to Suzanne C. Bart.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3814 kb)

Supplementary information

Crystallographic data for compound 1 (CIF 1230 kb)

Supplementary information

Crystallographic data for compound 2 (CIF 35 kb)

Supplementary information

Crystallographic data for compound 3 (CIF 372 kb)

Supplementary information

Crystallographic data for compound 4 (CIF 369 kb)

Supplementary information

Crystallographic data for compound 5 (CIF 54 kb)

Supplementary information

Crystallographic data for compound 6 (CIF 65 kb)

Supplementary information

Crystallographic data for compound 7 (CIF 1319 kb)

Supplementary information

Crystallographic data for compound 8 (CIF 73 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anderson, N., Odoh, S., Yao, Y. et al. Harnessing redox activity for the formation of uranium tris(imido) compounds. Nature Chem 6, 919–926 (2014). https://doi.org/10.1038/nchem.2009

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2009

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing