Abstract
Classically, late transition-metal organometallic compounds promote multielectron processes solely through the change in oxidation state of the metal centre. In contrast, uranium typically undergoes single-electron chemistry. However, using redox-active ligands can engage multielectron reactivity at this metal in analogy to transition metals. Here we show that a redox-flexible pyridine(diimine) ligand can stabilize a series of highly reduced uranium coordination complexes by storing one, two or three electrons in the ligand. These species reduce organoazides easily to form uranium–nitrogen multiple bonds with the release of dinitrogen. The extent of ligand reduction dictates the formation of uranium mono-, bis- and tris(imido) products. Spectroscopic and structural characterization of these compounds supports the idea that electrons are stored in the ligand framework and used in subsequent reactivity. Computational analyses of the uranium imido products probed their molecular and electronic structures, which facilitated a comparison between the bonding in the tris(imido) structure and its tris(oxo) analogue.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Kaim, W. The shrinking world of innocent ligands: conventional and non-conventional redox-active ligands. Eur. J. Inorg. Chem. 2012, 343–348 (2012).
Lyaskovskyy, V. & de Bruin, B. Redox non-innocent ligands: versatile new tools to control catalytic reactions. ACS Catal. 2, 270–279 (2012).
Chirik, P. J. Preface: forum on redox-active ligands. Inorg. Chem. 50, 9737–9740 (2011).
Chirik, P. J. & Wieghardt, K. Radical ligands confer nobility on base-metal catalysts. Science 327, 794–795 (2010).
Munha, R. F., Zarkesh, R. A. & Heyduk, A. F. Group transfer reactions of d0 transition metal complexes: redox-active ligands provide a mechanism for expanded reactivity. Dalton Trans. 42, 3751–3766 (2013).
Bouwkamp, M. W., Bowman, A. C., Lobkovsky, E. & Chirik, P. J. Iron-catalyzed [2π+2π] cycloaddition of α,ω-dienes: the importance of redox-active supporting ligands. J. Am. Chem. Soc. 128, 13340–13341 (2006).
Bart, S. C. et al. Electronic structure of bis(imino)pyridine iron dichloride, monochloride, and neutral ligand complexes: a combined structural, spectroscopic, and computational study. J. Am. Chem. Soc. 128, 13901–13912 (2006).
Cladis, D. P., Kiernicki, J. J., Fanwick, P. E. & Bart, S. C. Multi-electron reduction facilitated by a trianionic pyridine(diimine) ligand. Chem. Commun. 49, 4169–4171 (2013).
Morrison, D. L. et al. Intra- vs. intermolecular α-hydrogen abstraction in the generation of multiple imido complexes: synthesis, reactivity, and structural studies of the d0 tris(imido) functional group of tungsten. Organometallics 14, 2435–2446 (1995).
Schwarz, A. D., Nielson, A. J., Kaltsoyannis, N. & Mountford, P. The first group 4 metal bis(imido) and tris(imido) complexes. Chem. Sci. 3, 819–824 (2012).
Smith, D. P., Allen, K. D., Carducci, M. D. & Wigley, D. E. Tris(phenylimido) complexes of niobium and tantalum: preparation and properties of the d0 [M(=NR)3]− (M=Nb, Ta) functional group. Inorg. Chem. 31, 1319–1320 (1992).
Castro-Rodriguez, I., Nakai, H., Zakharov, L. N., Rheingold, A. L. & Meyer, K. A linear, O-coordinated η1-CO2 bound to uranium. Science 305, 1757–1760 (2004).
Lam, O. P., Anthon, C., Heinemann, F. W., O'Connor, J. M. & Meyer, K. Structural and spectroscopic characterization of a charge-separated uranium benzophenone ketyl radical complex. J. Am. Chem. Soc. 130, 6567–6576 (2008).
Lam, O. P., Feng, P. L., Heinemann, F. W., O'Connor, J. M. & Meyer, K. Charge-separation in uranium diazomethane complexes leading to C–H activation and chemical transformation. J. Am. Chem. Soc. 130, 2806–2816 (2008).
Budzelaar, P. H. M., de Bruin, B., Gal, A. W., Wieghardt, K. & van Lenthe, J. H. Metal-to-ligand electron transfer in diiminopyridine complexes of Mn–Zn. A theoretical study. Inorg. Chem. 40, 4649–4655 (2001).
Enright, D., Gambarotta, S., Yap, G. P. A. & Budzelaar, P. H. M. The ability of the α,α′-diiminopyridine ligand system to accept negative charge: isolation of paramagnetic and diamagnetic trianions. Angew. Chem. Int. Ed. 41, 3873–3876 (2002).
Knijnenburg, Q., Gambarotta, S. & Budzelaar, P. H. M. Ligand-centred reactivity in diiminepyridine complexes. Dalton Trans., 5442–5448 (2006).
Kiernicki, J. J. et al. Multielectron C–O bond activation mediated by a family of reduced uranium complexes. Inorg. Chem. 53, 3730–3741 (2014).
Tondreau, A. M. et al. Oxidation and reduction of bis(imino)pyridine iron dinitrogen complexes: evidence for formation of a chelate trianion. Inorg. Chem. 52, 635–646 (2013).
Diaconescu, P. L., Arnold, P. L., Baker, T. A., Mindiola, D. J. & Cummins, C. C. Arene-bridged diuranium complexes: inverted sandwiches supported by δ backbonding. J. Am. Chem. Soc. 122, 6108–6109 (2000).
Vlaisavljevich, B., Diaconescu, P. L., Lukens, W. L. Jr, Gagliardi, L. & Cummins, C. C. Investigations of the electronic structure of arene-bridged diuranium complexes. Organometallics 32, 1341–1352 (2013).
Mills, D. P. et al. A delocalized arene-bridged diuranium single-molecule magnet. Nature Chem. 3, 454–460 (2011).
Arnold, P. L., Mansell, S. M., Maron, L. & McKay, D. Spontaneous reduction and C–H borylation of arenes mediated by uranium(III) disproportionation. Nature Chem. 4, 668–674 (2012).
Bart, S. C., Heinemann, F. W., Anthon, C., Hauser, C. & Meyer, K. A new tripodal ligand system with steric and electronic modularity for uranium coordination chemistry. Inorg. Chem. 48, 9419–9426 (2009).
Evans, W. J., Kozimor, S. A., Ziller, J. W. & Kaltsoyannis, N. Structure, reactivity, and density functional theory analysis of the six-electron reductant, [(C5Me5)2U]2(μ-η6: η6-C6H6), synthesized via a new mode of (C5Me5)3M reactivity. J. Am. Chem. Soc. 126, 14533–14547 (2004).
Scott, J. et al. Formation of a paramagnetic Al complex and extrusion of Fe during the reaction of (diiminepyridine)Fe with AlR3 (R=Me, Et). J. Am. Chem. Soc. 127, 17204–17206 (2005).
Matson, E. M., Crestani, M. G., Fanwick, P. E. & Bart, S. C. Synthesis of U(IV) imidos from Tp*2U(CH2Ph) (Tp*=hydrotris(3,5-dimethylpyrazolyl)borate) by extrusion of bibenzyl. Dalton Trans. 41, 7952–7958 (2012).
Spencer, L. P., Yang, P., Scott, B. L., Batista, E. R. & Boncella, J. M. Oxidative addition to U(V)–U(V) dimers: facile routes to uranium(VI) bis(imido) complexes. Inorg. Chem. 48, 11615–11623 (2009).
Jilek, R. E. et al. A direct route to bis(imido)uranium(V) halides via metathesis of uranium tetrachloride. J. Am. Chem. Soc. 134, 9876–9878 (2012).
O'Grady, E. & Kaltsoyannis, N. On the inverse trans influence. Density functional studies of [MOX5]n− (M = Pa, n = 2; M = U, n = 1; M = Np, n = 0; X = F, Cl or Br). J. Chem. Soc. Dalton Trans. 1233–1239 (2002).
Kosog, B., La Pierre, H. S., Heinemann, F. W., Liddle, S. T. & Meyer, K. Synthesis of uranium(VI) terminal oxo complexes: molecular geometry driven by the inverse trans-influence. J. Am. Chem. Soc. 134, 5284–5289 (2012).
Lewis, A. J., Carroll, P. J. & Schelter, E. J. Stable uranium(VI) methyl and acetylide complexes and the elucidation of an inverse trans influence ligand series. J. Am. Chem. Soc. 135, 13185–13192 (2013).
Denning, R. G., Electronic structure and bonding in actinyl ions in Complexes, Clusters and Crystal Chemistry (ed. Clarke, M. J.) 215–276 (in Structure and Bonding Series 79, Springer Berlin Heidelberg, 1992).
Larsson, S. & Pyykkö, P. Relativistically parameterized extended Hückel calculations. IX. An iterative version with applications to some xenon, thorium and uranium compounds. Chem. Phys. 101, 355–369 (1986).
Hayton, T. W. et al. Synthesis of imido analogs of the uranyl ion. Science 310, 1941–1943 (2005).
Warner, B. P., Scott, B. L. & Burns, C. J. A simple preparative route to bis(imido)uranium(VI) complexes by the direct reductions of diazenes and azides. Angew. Chem. Int. Ed. 37, 959–960 (1998).
Evans, W. J., Kozimor, S. A. & Ziller, J. W. [(C5Me5)2U][(μ-Ph)2BPh2] as a four electron reductant. Chem. Commun. 4681–4683 (2005).
Benson, M. T., Bryan, J. C., Burrell, A. K. & Cundari, T. R. Bonding and structure of heavily π loaded complexes. Inorg. Chem. 34, 2348–2355 (1995).
Nalewajski, R. F., Mrozek, J. & Mazur, G. Quantum chemical valence indices from the one-determinantal difference approach. Can. J. Chem. Rev. Can. Chim. 74, 1121–1130 (1996).
Clark, D. L. et al. Chemical speciation of the uranyl ion under highly alkaline conditions. Synthesis, structures, and oxo ligand exchange dynamics. Inorg. Chem. 38, 1456–1466 (1999).
Ingram, K. I. M., Haeller, L. J. L. & Kaltsoyannis, N. Density functional theory investigation of the geometric and electronic structures of [UO2(H2O)m(OH)n]2–n (n + m = 5). Dalton Trans. 2403–2414 (2006).
Odoh, S. O., Govind, N., Schreckenbach, G. & de Jong, W. A. Cation–cation interactions in [(UO2)2(OH)n]4–n complexes. Inorg. Chem. 52, 11269–11279 (2013).
Bader, R. Atoms in Molecules: A Quantum Theory (Oxford University Press, 1990).
Mountain, A. R. E. & Kaltsoyannis, N. Do QTAIM metrics correlate with the strength of heavy element-ligand bonds? Dalton Trans. 42, 13477–13486 (2013).
Domagala, M. & Grabowski, S. J. C–H–N and C–H–S hydrogen bonds: influence of hybridization on their strength. J. Phys. Chem. A 109, 5683–5688 (2005).
Grabowski, S. J., Sokalski, W. A. & Leszczynski, J. How short can the H–H intermolecular contact be? New findings that reveal the covalent nature of extremely strong interactions. J. Phys. Chem. A 109, 4331–4341 (2005).
Bankiewicz, B., Matczak, P. & Palusiak, M. Electron density characteristics in bond critical point (QTAIM) versus interaction energy components (SAPT): the case of charge-assisted hydrogen bonding. J. Phys. Chem. A 116, 452–459 (2012).
Gopinathan, M. S., Jug, K. & Valency, I. A quantum chemical definition and properties. Theor. Chim. Acta 63, 497–509 (1983).
Acknowledgements
This work was funded by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the US Department of Energy through Grants DE-AC02-12ER16328 (S.C.B.) and USDOE/DESC002183 (L.G. and S.O.O.). E.J.S. gratefully acknowledges the National Science Foundation (CHE 1362854) for support. The Laboratory Directed Research and Development program of the Lawrence Livermore National Laboratory is acknowledged for support to J.R.W. S.C.B. and E.J.S. are Cottrell Scholars funded by the Research Corporation.
Author information
Authors and Affiliations
Contributions
N.H.A. and S.C.B. conceived and designed the experiments. N.H.A. synthesized all the compounds. S.O.O., Y.Y., M.D.G., J.R.W. and L.G. performed the computations. U.J.W., A.J.L. and E.J.S. performed and interpreted the SQUID magnetometry. N.H.A., B.A.S., J.J.K. and P.E.F. performed the crystallographic analysis. N.H.A., S.O.O., E.J.S. and S.C.B. co-wrote the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 3814 kb)
Supplementary information
Crystallographic data for compound 1 (CIF 1230 kb)
Supplementary information
Crystallographic data for compound 2 (CIF 35 kb)
Supplementary information
Crystallographic data for compound 3 (CIF 372 kb)
Supplementary information
Crystallographic data for compound 4 (CIF 369 kb)
Supplementary information
Crystallographic data for compound 5 (CIF 54 kb)
Supplementary information
Crystallographic data for compound 6 (CIF 65 kb)
Supplementary information
Crystallographic data for compound 7 (CIF 1319 kb)
Supplementary information
Crystallographic data for compound 8 (CIF 73 kb)
Rights and permissions
About this article
Cite this article
Anderson, N., Odoh, S., Yao, Y. et al. Harnessing redox activity for the formation of uranium tris(imido) compounds. Nature Chem 6, 919–926 (2014). https://doi.org/10.1038/nchem.2009
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nchem.2009
This article is cited by
-
Photochemical Synthesis of Transition Metal-Stabilized Uranium(VI) Nitride Complexes
Nature Communications (2022)
-
Protactinium and the intersection of actinide and transition metal chemistry
Nature Communications (2018)
-
The secret is in the ring
Nature Chemistry (2018)
-
The role of uranium–arene bonding in H2O reduction catalysis
Nature Chemistry (2018)
-
Elucidating bonding preferences in tetrakis(imido)uranate(VI) dianions
Nature Chemistry (2017)