Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Observation of an all-boron fullerene

Abstract

After the discovery of fullerene-C60, it took almost two decades for the possibility of boron-based fullerene structures to be considered. So far, there has been no experimental evidence for these nanostructures, in spite of the progress made in theoretical investigations of their structure and bonding. Here we report the observation, by photoelectron spectroscopy, of an all-boron fullerene-like cage cluster at B40 with an extremely low electron-binding energy. Theoretical calculations show that this arises from a cage structure with a large energy gap, but that a quasi-planar isomer of B40 with two adjacent hexagonal holes is slightly more stable than the fullerene structure. In contrast, for neutral B40 the fullerene-like cage is calculated to be the most stable structure. The surface of the all-boron fullerene, bonded uniformly via delocalized σ and π bonds, is not perfectly smooth and exhibits unusual heptagonal faces, in contrast to C60 fullerene.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Photoelectron spectrum of the B40 cluster and comparison with simulated spectra.
Figure 2: Top and side views of the global minimum and low-lying isomers of B40 and B40 at the PBE0/6-311+G* level.
Figure 3: Configurational energy spectra at the PBE0/6-311+G* level.
Figure 4: Results of chemical bonding analyses for the B40 fullerene.

References

  1. 1

    Kroto, H. W. et al. C60: buckminsterfullerene. Nature 318, 162–163 (1985).

    CAS  Article  Google Scholar 

  2. 2

    Research highlight: new balls, please. Nature 447, 4 (2007).

  3. 3

    La Placa, S. J., Roland, P. A. & Wynne, J. J. Boron clusters (Bn, n = 2–52) produced by laser ablation of hexagonal boron nitride. Chem. Phys. Lett. 190, 163–168 (1992).

    CAS  Article  Google Scholar 

  4. 4

    Zhai, H. J. et al. Hepta- and octa-coordinate boron in molecular wheels of eight- and nine-atom boron clusters. Angew. Chem. Int. Ed. 42, 6004–6008 (2003).

    CAS  Article  Google Scholar 

  5. 5

    Zhai, H. J. et al. Hydrocarbon analogues of boron clusters – planarity, aromaticity, and antiaromaticity. Nature Mater. 2, 827–833 (2003).

    CAS  Article  Google Scholar 

  6. 6

    Kiran, B. et al. Planar-to-tubular structural transition in boron clusters: B20 as the embryo of single-walled boron nanotubes. Proc. Natl Acad. Sci. USA 102, 961–964 (2005).

    CAS  Article  Google Scholar 

  7. 7

    Huang, W. et al. A concentric planar doubly π-aromatic B19 cluster. Nature Chem. 2, 202–206 (2010).

    Article  Google Scholar 

  8. 8

    Popov, I. A. et al. A combined photoelectron spectroscopy and ab initio study of the quasi-planar B24 cluster. J. Chem. Phys. 139, 144307 (2013).

    Article  Google Scholar 

  9. 9

    Oger, E. et al. Boron cluster cations: transition from planar to cylindrical structures. Angew. Chem. Int. Ed. 46, 8503–8506 (2007).

    CAS  Article  Google Scholar 

  10. 10

    Sergeeva, A. P. et al. Understanding boron through size-selected clusters: structure, chemical bonding, and fluxionality. Acc. Chem. Res. 47, 1349–1358 (2014).

    CAS  Article  Google Scholar 

  11. 11

    Piazza, Z. A. et al. Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets. Nature Commun. 5, 3113 (2014).

    Article  Google Scholar 

  12. 12

    Quandt, A. & Boustani, I. Boron nanotubes. Chem. Phys. Chem. 6, 2001–2008 (2005).

    CAS  Article  Google Scholar 

  13. 13

    Tang, H. & Ismail-Beigi, S. Novel precursors for boron nanotubes: the competition of two-center and three-center bonding in boron sheets. Phys. Rev. Lett. 99, 115501 (2007).

    Article  Google Scholar 

  14. 14

    Yang, X. B., Ding, Y. & Ni, J. Ab initio prediction of stable boron sheets and boron nanotubes: structure, stability, and electronic properties. Phys. Rev. B 77, 041402(R) (2008).

    Article  Google Scholar 

  15. 15

    Szwacki, N. G., Sadrzadeh, A. & Yakobson, B. I. B80 fullerene: an ab initio prediction of geometry, stability, and electronic structure. Phys. Rev. Lett. 98, 166804 (2007); erratum 100, 159901 (2008).

    Article  Google Scholar 

  16. 16

    Yan, Q. B. et al. Family of boron fullerenes: general constructing schemes, electron counting rule, and ab initio calculations. Phys. Rev. B 78, 201401 (2008).

    Article  Google Scholar 

  17. 17

    Zope, R. R. et al. Boron fullerenes: from B80 to hole doped boron sheets. Phys. Rev. B 79, 161403 (2009).

    Article  Google Scholar 

  18. 18

    Sheng, X. L., Yan, Q. B., Zheng, Q. R. & Su, G. Boron fullerenes B32+8 k with four-membered rings and B32 solid phases: geometrical structures and electronic properties. Phys. Chem. Chem. Phys. 11, 9696–9702 (2009).

    CAS  Article  Google Scholar 

  19. 19

    Ozdogan, C. et al. The unusually stable B100 fullerene, structural transitions in boron nanostructures, and a comparative study of α- and γ-boron and sheets. J. Phys. Chem. C 114, 4362–4375 (2010).

    CAS  Article  Google Scholar 

  20. 20

    Wang, L. et al. Boron fullerenes with 32–56 atoms: irregular cage configurations and electronic properties. Chem. Phys. Lett. 501, 16−19 (2010).

    CAS  Article  Google Scholar 

  21. 21

    Muya, J. T., Gopakumar, G., Nguyen, M. T. & Ceulemans, A. The leapfrog principle for boron fullerenes: a theoretical study of structures and stability of B112 . Phys. Chem. Chem. Phys. 13, 7524–7533 (2011).

    CAS  Article  Google Scholar 

  22. 22

    Zope, R. R. & Baruah, T. Snub boron nanostructures: chiral fullerenes, nanotubes and planar sheet. Chem. Phys. Lett. 501, 193–196 (2011).

    CAS  Article  Google Scholar 

  23. 23

    Polad, S. & Ozay, M. A new hole density as a stability measure for boron fullerenes. Phys. Chem. Chem. Phys. 15, 19819–19824 (2013).

    CAS  Article  Google Scholar 

  24. 24

    Prasad, D. L. V. K. & Jemmis, E. D. Stuffing improves the stability of fullerenelike boron clusters. Phys. Rev. Lett. 100, 165504 (2008).

    Article  Google Scholar 

  25. 25

    De, S. et al. Energy landscape of fullerene materials: a comparison of boron to boron nitride and carbon. Phys. Rev. Lett. 106, 225502 (2011).

    Article  Google Scholar 

  26. 26

    Li, F. Y. et al. B80 and B101–103 clusters: remarkable stability of the core–shell structures established by validated density functionals. J. Chem. Phys. 136, 074302 (2012).

    Article  Google Scholar 

  27. 27

    Boulanger, P. et al. Selecting boron fullerenes by cage-doping mechanisms. J. Chem. Phys. 138, 184302 (2013).

    Article  Google Scholar 

  28. 28

    Wang, L. S., Cheng, H. S. & Fan, J. Photoelectron spectroscopy of size-selected transition metal clusters: Fen, n = 3−24. J. Chem. Phys. 102, 9480–9493 (1995).

    CAS  Article  Google Scholar 

  29. 29

    Shang, C. & Liu, Z. P. Stochastic surface walking method for structure prediction and pathway searching. J. Chem. Theory Comput. 9, 1838–1845 (2013).

    CAS  Article  Google Scholar 

  30. 30

    Wales, D. J. & Scheraga, H. A. Global optimization of clusters, crystals, and biomolecules. Science 285, 1368–1372 (1999).

    CAS  Article  Google Scholar 

  31. 31

    Krishnan, R., Binkley, J. S., Seeger, R. & Pople, J. A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 72, 650–654 (1980).

    CAS  Article  Google Scholar 

  32. 32

    Perdew, J. P., Burke, K. & Ernzehof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  Article  Google Scholar 

  33. 33

    Adamo, C. & Barone, V. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 110, 6158–6165 (1999).

    CAS  Article  Google Scholar 

  34. 34

    Tao, J., Perdew, J. P., Staroverov, V. N. & Scuseria, G. E. Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys. Rev. Lett. 91, 146401 (2003).

    Article  Google Scholar 

  35. 35

    Bauernschmitt, R. & Ahlrichs, R. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem. Phys. Lett. 256, 454–464 (1996).

    CAS  Article  Google Scholar 

  36. 36

    Iijima, S., Ichihashi, T. & Ando, Y. Pentagons, heptagons, and negative curvature in graphite microtubule growth. Nature 356, 776–778 (1992).

    CAS  Article  Google Scholar 

  37. 37

    Troshin, P. A. et al. Isolation of two seven-membered ring C58 fullerene derivatives: C58F17CF3 and C58F18 . Science 309, 278–281 (2005).

    CAS  Article  Google Scholar 

  38. 38

    Schleyer, P. v. R. et al. Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J. Am. Chem. Soc. 118, 6317–6318 (1996).

    CAS  Article  Google Scholar 

  39. 39

    Zubarev, D. Y. & Boldyrev, A. I. Developing paradigms of chemical bonding: adaptive natural density partitioning. Phys. Chem. Chem. Phys. 10, 5207–5217 (2008).

    CAS  Article  Google Scholar 

  40. 40

    Romanescu, C., Harding, D. J., Fielicke, A. & Wang, L. S. Probing the structures of neutral boron clusters using infrared/vacuum ultraviolet two-color ionization: B11, B16, and B17 . J. Chem. Phys. 137, 014317 (2012).

    Article  Google Scholar 

  41. 41

    Penev, E. S., Bhowmick, S., Sadrzadeh, A & Yakobson, B. I. Polymorphism of two-dimensional boron. Nano Lett. 12, 2441–2445 (2012).

    CAS  Article  Google Scholar 

  42. 42

    Kratschmer, W., Lamb, L. D., Fostiropoulos, K. & Huffman, D. R. Solid C60: a new form of carbon. Nature 347, 354–358 (1990).

    Article  Google Scholar 

  43. 43

    Wang, L. S. et al. The electronic structure of Ca@C60 . Chem. Phys. Lett. 207, 354–359 (1993).

    CAS  Article  Google Scholar 

  44. 44

    Li, M. et al. Ca-coated boron fullerenes and nanotubes as superior hydrogen storage materials. Nano Lett. 9, 1944–1948 (2009).

    CAS  Article  Google Scholar 

  45. 45

    Bulusu, S. et al. Evidence of hollow golden cages. Proc. Natl Acad. Sci. USA 103, 8326–8330 (2006).

    CAS  Article  Google Scholar 

  46. 46

    Cui, L. F. et al. Sn122−: stannaspherene. J. Am. Chem. Soc. 128, 8390–8391 (2006).

    CAS  Article  Google Scholar 

  47. 47

    Cui, L. F. et al. Pb122−: plumbaspherene. J. Phys. Chem. A 110, 10169–10172 (2006).

    CAS  Article  Google Scholar 

  48. 48

    Valiev, M. et al. NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations. Comput. Phys. Commun. 181, 1477–1489 (2010).

    CAS  Article  Google Scholar 

  49. 49

    Frisch, M. J. et al. GAUSSIAN 09, Revision A.2 (Gaussian Inc., Wallingford, Connecticut, 2009).

  50. 50

    Werner, H. J. et al. MOLPRO, version 2012.1 (www.molpro.net).

Download references

Acknowledgements

This work was supported by the US National Science Foundation (CHE-1263745 to L-S.W.), the National Natural Science Foundation of China (20825311, 21173051, 21243004 and 21373130), the National Key Basic Research Special Foundations (2011CB808500, 2013CB834603 and 2011CB932401), the Shanxi International Cooperation project (2013081018) and the Science and Technology Commission of Shanghai Municipality (08DZ2270500). H-J.Z. gratefully acknowledges the support of a start-up fund from Shanxi University. The calculations were performed using supercomputers at the Computer Network Information Center, Chinese Academy of Sciences and Tsinghua National Laboratory for Information Science and Technology.

Author information

Affiliations

Authors

Contributions

H-J.Z., S-D.L., J.L. and L-S.W. designed the project. H-J.Z. and W-L.L. carried out the experiments. Q.C., H.B., W-J.T., H-G.L., Y-B.W. and Y-W.M. constructed the guess structures and did the electronic structure calculations and spectral simulations. G-F.W., Z-P.L. and Y-F.Z. did the SSW and BH structural searches independently. H-S.H. performed the CCSD calculations. H-J.Z., J.L., S-D.L. and L-S.W. analysed the data and wrote the paper. All authors discussed the results and made comments and edits to the manuscript.

Corresponding authors

Correspondence to Jun Li or Si-Dian Li or Lai-Sheng Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 11847 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhai, HJ., Zhao, YF., Li, WL. et al. Observation of an all-boron fullerene. Nature Chem 6, 727–731 (2014). https://doi.org/10.1038/nchem.1999

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing