Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Chiral encoding may provide a simple solution to the origin of life

Abstract

The route by which the complex and specific molecules of life arose from the 'prebiotic soup' remains an unsolved problem. Evolution provides a large part of the answer, but this requires molecules that can carry information (that is, exist in many variants) and can replicate themselves. The process is commonplace in living organisms, but not so easy to achieve with simple chemical systems. It is especially difficult to contemplate in the chemical chaos of the prebiotic world. Although popular in many quarters, the notion that RNA was the first self-replicator carries many difficulties. Here, we present an alternative view, suggesting that there may be undiscovered self-replication mechanisms possible in much simpler systems. In particular, we highlight the possibility of information coding through stereochemical configurations of substituents in organic polymers. We also show that this coding system leads naturally to enantiopurity, solving the apparent problem of biological homochirality.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Prebiotic polymerizations.
Figure 2: The principle of chiral encoding.
Figure 3: Homochirality through the informational self-replication of chiral polymers.
Figure 4: Where should the search begin for chiral polymers that might have encoded early life?

Similar content being viewed by others

References

  1. Zimmer, C. How and where did life on Earth arise? Science 309, 89–89 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Lynn, D., Burrows, C., Goodwin, J. & Mehta, A. Origins of chemical evolution. Acc. Chem. Res. 45, 2023–2024 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. McCollom, T. M. & Seewald, J. S. Abiotic synthesis of organic compounds in deep-sea hydrothermal environments. Chem. Rev. 107, 382–401 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Bada, J. L. New insights into prebiotic chemistry from Stanley Miller's spark discharge experiments. Chem. Soc. Rev. 42, 2186–2196 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Herd, C. D. K. et al. Origin and evolution of prebiotic organic matter as inferred from the Tagish Lake meteorite. Science 332, 1304–1307 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Benner, S. A., Ricardo, A. & Carrigan, M. A. Is there a common chemical model for life in the universe? Curr. Opin. Chem. Biol. 8, 672–689 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Atkins, J. F., Gesteland, R. F. & Cech, T. R. (eds) RNA Worlds: From Life's Origins to Diversity in Gene Regulation (Cold Spring Harbour Laboratory Press, 2011).

    Google Scholar 

  8. Ban, N., Nissen, P., Hansen, J., Moore, P. B. & Steitz, T. A. The complete atomic structure of the large ribosomal subunit at 2.4 angstrom resolution. Science 289, 905–920 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Wimberly, B. T. et al. Structure of the 30S ribosomal subunit. Nature 407, 327–339 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. de Duve, C. The onset of selection. Nature 433, 581–582 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Joyce, G. F. & Orgel, L. E. in The RNA World (eds Gesteland, R. F., Cech, T. R. & Atkins, J. F.) 23–56 (Cold Spring Harbour Laboratory Press, 2006).

    Google Scholar 

  12. Orgel, L. E. Prebiotic chemistry and the origin of the RNA world. Crit. Rev. Biochem. Mol. Biol. 39, 99–123 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Cairns-Smith, A. G. Genetic Takeover and the Mineral Origin of Life (Cambridge Univ. Press, 1982).

    Google Scholar 

  14. Cairns-Smith, A. G. Chemistry and the missing era of evolution. Chem. Eur. J. 14, 3830–3839 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Benner, S. A., Kim, H. J. & Carrigan, M. A. Asphalt, water, and the prebiotic synthesis of ribose, ribonucleosides, and RNA. Acc. Chem. Res. 45, 2025–2034 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Ricardo, A., Carrigan, M. A., Olcott, A. N. & Benner, S. A. Borate minerals stabilize ribose. Science 303, 196–196 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Lambert, J. B., Gurusamy-Thangavelu, S. A. & Ma, K. B. A. The silicate-mediated formose reaction: bottom-up synthesis of sugar silicates. Science 327, 984–986 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Ritson, D. & Sutherland, J. D. Prebiotic synthesis of simple sugars by photoredox systems chemistry. Nature Chem. 4, 895–899 (2012).

    Article  CAS  Google Scholar 

  19. Powner, M. W., Gerland, B. & Sutherland, J. D. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459, 239–242 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Hein, J. E., Tse, E. & Blackmond, D. G. A route to enantiopure RNA precursors from nearly racemic starting materials. Nature Chem. 3, 704–706 (2011).

    Article  CAS  Google Scholar 

  21. Bean, H. D. et al. Formation of a beta-pyrimidine nucleoside by a free pyrimidine base and ribose in a plausible prebiotic reaction. J. Am. Chem. Soc. 129, 9556–9557 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Huang, W. H. & Ferris, J. P. One-step, regioselective synthesis of up to 50-mers of RNA oligomers by montmorillonite catalysis. J. Am. Chem. Soc. 128, 8914–8919 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Deck, C., Jauker, M. & Richert, C. Efficient enzyme-free copying of all four nucleobases templated by immobilized RNA. Nature Chem. 3, 603–608 (2011).

    Article  CAS  Google Scholar 

  24. Bowler, F. R. et al. Prebiotically plausible oligoribonucleotide ligation facilitated by chemoselective acetylation. Nature Chem. 5, 383–389 (2013).

    Article  CAS  Google Scholar 

  25. Engelhart, A. E., Powner, M. W. & Szostak, J. W. Functional RNAs exhibit tolerance for non-heritable 2′-5′ versus 3′-5′ backbone heterogeneity. Nature Chem. 5, 390–394 (2013).

    Article  CAS  Google Scholar 

  26. Joyce, G. F. et al. Chiral selection in poly(C)-directed synthesis of oligo(G). Nature 310, 602–604 (1984).

    Article  CAS  PubMed  Google Scholar 

  27. Joyce, G. F. Forty years of in vitro evolution. Angew. Chem. Int. Ed. 46, 6420–6436 (2007).

    Article  CAS  Google Scholar 

  28. Robertson, M. P. & Scott, W. G. The structural basis of ribozyme-catalyzed RNA assembly. Science 315, 1549–1553 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Wochner, A., Attwater, J., Coulson, A. & Holliger, P. Ribozyme-catalyzed transcription of an active ribozyme. Science 332, 209–212 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Eschenmoser, A. Chemical etiology of nucleic acid structure. Science 284, 2118–2124 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Eschenmoser, A. Etiology of potentially primordial biomolecular structures: from vitamin B12 to the nucleic acids and an inquiry into the chemistry of life's origin: a retrospective. Angew. Chem. Int. Ed. 50, 12412–12472 (2011).

    Article  CAS  Google Scholar 

  32. Bohler, C., Nielsen, P. E. & Orgel, L. E. Template switching between PNA and RNA oligonucleotides. Nature 376, 578–581 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Meggers, E. & Zhang, L. Synthesis and properties of the simplified nucleic acid glycol nucleic acid. Acc. Chem. Res. 43, 1092–1102 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Pinheiro, V. B. et al. Synthetic genetic polymers capable of heredity and evolution. Science 336, 341–344 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hirao, I., Kimoto, M. & Yamashige, R. Natural versus artificial creation of base pairs in DNA: origin of nucleobases from the perspectives of unnatural base pair studies. Acc. Chem. Res. 45, 2055–2065 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Kostler, S. Polyaldehydes: homopolymers, block copolymers and promising applications. Polym. Int. 61, 1221–1227 (2012).

    Article  CAS  Google Scholar 

  37. Danger, G., Plasson, R. & Pascal, R. Pathways for the formation and evolution of peptides in prebiotic environments. Chem. Soc. Rev. 41, 5416–5429 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Nampoothiri, K. M., Nair, N. R. & John, R. P. An overview of the recent developments in polylactide (PLA) research. Bioresource Technol. 101, 8493–8501 (2010).

    Article  CAS  Google Scholar 

  39. Weber, A. L. The triose model: glyceraldehyde as a source of energy and monomers for prebiotic condensation-reactions. Origins Life Evol. B 17, 107–119 (1987).

    Article  CAS  Google Scholar 

  40. Orgel, L. E. Unnatural selection in chemicals systems. Acc. Chem. Res. 28, 109–118 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Feringa, B. L. & van Delden, R. A. Absolute asymmetric synthesis: the origin, control, and amplification of chirality. Angew. Chem. Int. Ed. 38, 3419–3438 (1999).

    Article  CAS  Google Scholar 

  42. Quack, M. How important is parity violation for molecular and biomolecular chirality? Angew. Chem. Int. Ed. 41, 4618–4630 (2002).

    Article  CAS  Google Scholar 

  43. Pizzarello, S. The chemistry of life's origin: a carbonaceous meteorite perspective. Acc. Chem. Res. 39, 231–237 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Evans, A. C., Meinert, C., Giri, C., Goesmann, F. & Meierhenrich, U. J. Chirality, photochemistry and the detection of amino acids in interstellar ice analogues and comets. Chem. Soc. Rev. 41, 5447–5458 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Kondepudi, D. K. & Asakura, K. Chiral autocatalysis, spontaneous symmetry breaking, and stochastic behavior. Acc. Chem. Res. 34, 946–954 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Nanita, S. C. & Cooks, R. G. Serine octamers: cluster formation, reactions, and implications for biomolecule homochirality. Angew. Chem. Int. Ed. 45, 554–569 (2006).

    Article  CAS  Google Scholar 

  47. Blackmond, D. G. Asymmetric autocatalysis and its implications for the origin of homochirality. Proc. Natl Acad. Sci. USA 101, 5732–5736 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hein, J. E. & Blackmond, D. G. On the origin of single chirality of amino acids and sugars in biogenesis. Acc. Chem. Res. 45, 2045–2054 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Bolli, M., Micura, R. & Eschenmoser, A. Pyranosyl-RNA: chiroselective self-assembly of base sequences by ligative oligomerization of tetranucleotide-2′, 3′- cyclophosphates (with a commentary concerning the origin of biomolecular homochirality). Chem. Biol. 4, 309–320 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Siegel, J. S. Homochiral imperative of molecular evolution. Chirality 10, 24–27 (1998).

    Article  CAS  Google Scholar 

  51. Schomaker, E. & Challa, G. Complexation of stereoregular poly(methyl methacrylates). 14. The basic structure of the stereocomplex of isotactic and syndiotactic poly(methyl methacrylate). Macromolecules 22, 3337–3341 (1989).

    Article  CAS  Google Scholar 

  52. Serizawa, T. et al. Stepwise stereocomplex assembly of stereoregular poly(methyl methacrylate)s on a substrate. J. Am. Chem. Soc. 122, 1891–1899 (2000).

    Article  CAS  Google Scholar 

  53. Serizawa, T., Hamada, K. & Akashi, M. Polymerization within a molecular-scale stereoregular template. Nature 429, 52–55 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Weissbuch, I., Illos, R. A., Bolbach, G. & Lahav, M. Racemic beta-sheets as templates of relevance to the origin of homochirality of peptides: lessons from crystal chemistry. Acc. Chem. Res. 42, 1128–1140 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Saghatelian, A., Yokobayashi, Y., Soltani, K. & Ghadiri, M. R. A chiroselective peptide replicator. Nature 409, 797–801 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the Leverhulme Trust for financial support of our work in this area (grant number F/00 182/CM).

Author information

Authors and Affiliations

Authors

Contributions

This article was written by A.P.D. with assistance, comments and criticism from A.B.

Corresponding author

Correspondence to Anthony P. Davis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brewer, A., Davis, A. Chiral encoding may provide a simple solution to the origin of life. Nature Chem 6, 569–574 (2014). https://doi.org/10.1038/nchem.1981

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1981

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing