Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Design and synthesis of the first triply twisted Möbius annulene

Subjects

Abstract

As long as 50 years ago theoretical calculations predicted that Möbius annulenes with only one π surface and one edge would exhibit peculiar electronic properties and violate the Hückel rules. Numerous synthetic attempts notwithstanding, the first singly twisted Möbius annulene was not prepared until 2003. Here we present a general, rational strategy to synthesize triply or even more highly twisted cyclic π systems. We apply this strategy to the preparation of a triply twisted [24]dehydroannulene, the structure of which was confirmed by X-ray analysis. Our strategy is based on the topological transformation of ‘twist’ into ‘writhe’. The advantage is twofold: the product exhibits a lower degree of strain and precursors can be designed that inherently include the writhe, which, after cyclization, ends up in the Möbius product. With our strategy, triply twisted systems are easier to prepare than their singly twisted counterparts.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Strategies to introduce multiple twists in a cycle.
Figure 2: Combining building blocks with writhe to produce a triply twisted system and identification of a target structure.
Figure 3: Synthesis of the Möbius dehydroannulene.
Figure 4: Structure of the Möbius dehydroannulene 1a/b with Lk = 3 as determined by X-ray crystallography.
Figure 5: Topological procedure to determine the linking number Lk of the π system of 1.

References

  1. 1

    Sobanski, A., Schmieder, R. & Vögtle, F. Topologische Stereochemie und Chiralität. Chemie in unserer Zeit 34, 160–169 (2000).

    CAS  Article  Google Scholar 

  2. 2

    Walba, D. M. Topological stereochemistry. Tetrahedron 41, 3161–3212 (1985).

    CAS  Article  Google Scholar 

  3. 3

    Fenlon, E. E. Open problems in chemical topology. Eur. J. Org. Chem. 5023–5035 (2008).

    Article  Google Scholar 

  4. 4

    Heilbronner, E. Hückel molecular orbitals of Möbius-type conformations of annulenes. Tetrahedron Lett. 5, 1923–1928 (1964).

    Article  Google Scholar 

  5. 5

    Castro, C., Isborn, C. M., Karney, W. L., Mauksch, M. & Schleyer, P. v. R. Aromaticity with a twist: Möbius [4n]annulenes. Org. Lett. 4, 3431–3434 (2002).

    CAS  PubMed  Article  Google Scholar 

  6. 6

    Castro, C., Karney, W. L., Valencia, M. A., Vu, C. M. H. & Pemberton, R. P. Möbius aromaticity in [12]annulenes: cistrans isomerization via twist-coupled bond shifting. J. Am. Chem. Soc. 127, 9704–9705 (2005).

    CAS  PubMed  Article  Google Scholar 

  7. 7

    Mauksch, M. & Tsogoeva, S. B. Neutral Möbius aromatics: derivatives of the pyrrole congener aza[11]annulene as promising synthetic targets. Eur. J. Org. Chem. 34, 5755–5763 (2008).

    Article  CAS  Google Scholar 

  8. 8

    Zoellner, R. W. Krebs, J. F. & Browne, D. M. Violently twisted and strained organic molecules: a descriptor system for simple coronoid aromatics with a Möbius half-twist and semiempirical calculations on the Möbius analogs of coronene. J. Chem. Inf. Comput. Sci. 34, 252–258 (1994).

    CAS  Article  Google Scholar 

  9. 9

    Havenith, R. W. A., Van Lenthe, J. H. & Jenneskens, L. W. Möbius aromaticity in small [n]trans-annulenes. Int. J. Quant. Chem. 85, 52–60 (2001).

    CAS  Article  Google Scholar 

  10. 10

    Fowler, P. W. Hückel spectra of Möbius π systems. Phys. Chem. Chem. Phys. 4, 2878–2883 (2002).

    CAS  Article  Google Scholar 

  11. 11

    Mucke, E-K., Köhler, F. & Herges, R. The [13]annulene cation is a stable Möbius annulene cation. Org. Lett. 12, 1708–1711 (2010).

    CAS  PubMed  Article  Google Scholar 

  12. 12

    Mucke, E-K., Schönborn, B., Köhler, F. & Herges, R. Stability and aromaticity of charged Möbius [4n]annulenes. J. Org. Chem. 76, 35–41 (2011).

    CAS  PubMed  Article  Google Scholar 

  13. 13

    Bucher, G. et al. Is the [9]annulene cation a Möbius annulene? Angew. Chem. Int. Ed. 48, 9971–9974 (2009).

    CAS  Article  Google Scholar 

  14. 14

    Braten, M. N, Castro, C., Herges, R., Köhler, F. & Karney, W. L. The [12]annulene global minimum. J. Org. Chem. 73, 1532–1535 (2008).

    CAS  PubMed  Article  Google Scholar 

  15. 15

    Ajami, D., Oeckler, O., Simon, A. & Herges, R. Synthesis of a Möbius aromatic hydrocarbon. Nature 426, 819–821 (2003).

    CAS  PubMed  Article  Google Scholar 

  16. 16

    Ajami, D. et al. Synthesis and properties of the first Möbius annulenes. Chem. Eur. J. 12, 5434–5445 (2006).

    CAS  PubMed  Article  Google Scholar 

  17. 17

    Lemal, D. M. Aromatics do the twist. Nature 426, 776–777 (2003).

    CAS  PubMed  Article  Google Scholar 

  18. 18

    Saito, S. & Osuka, A. Expanded porphyrins: intriguing structures, electronic properties, and reactivities. Angew. Chem. Int. Ed. 50, 4342–4373 (2011).

    CAS  Article  Google Scholar 

  19. 19

    Stepien, M., Sprutta, N. & Latos-Grażyński, L. Figure eights, Möbius bands, and more: conformation and aromaticity of porphyrinoids. Angew. Chem. Int. Ed. 50, 4288–4340 (2011).

    CAS  Article  Google Scholar 

  20. 20

    Sankar, J. et al. Unambiguous identification of Möbius aromaticity for meso-aryl-substituted [28]hexaphyrins(1.1.1.1.1.1). J. Am. Chem. Soc. 130, 13568–13579 (2008).

    CAS  PubMed  Article  Google Scholar 

  21. 21

    Herges, R. Aromatics with a twist. Nature 450, 36–37 (2007).

    CAS  PubMed  Article  Google Scholar 

  22. 22

    Crick, F. H. C. Linking numbers and nucleosomes. Proc. Natl Acad. Sci. USA 73, 2639–2643 (1976).

    CAS  PubMed  Article  Google Scholar 

  23. 23

    Fuller, F. B. Decomposition of the linking number of a closed ribbon: a problem from molecular biology. Proc. Natl Acad. Sci. USA 75, 3557–3561 (1978).

    CAS  PubMed  Article  Google Scholar 

  24. 24

    Klenin, K. & Langowski, J. Computation of writhe in modeling of supercoiled DNA. Biopolymers 54, 307–317 (2000).

    CAS  PubMed  Article  Google Scholar 

  25. 25

    Fuller, F. B. The writhing number of a space curve. Proc. Natl Acad. Sci. USA 68, 815–819 (1971).

    CAS  PubMed  Article  Google Scholar 

  26. 26

    Schaller, G. R. & Herges, R. Möbius molecules with twists and writhes. Chem. Commun. 1254–1260 (2013).

  27. 27

    Schaller, G. R. Design und Synthese Möbius-topologischer und Möbius-aromatischer Kohlenwasserstoffe PhD thesis, Univ. Kiel (2013).

  28. 28

    Călugăreanu, G. Sur les classes d'isotopie des noeuds tridimensionnels et leurs invariants. Czech. Math. J. 11, 588–625 (1961).

    Google Scholar 

  29. 29

    Lilley, O. M. J. DNA supercoiling. Biochem. Soc. Trans. 14, 489–493 (1986).

    CAS  PubMed  Article  Google Scholar 

  30. 30

    Hückel, E. Quantentheoretische Beiträge zum Benzolproblem. Z. Phys. 70, 204–286 (1931).

    Article  Google Scholar 

  31. 31

    Hückel, E. Quantentheoretische Beiträge zum Problem der aromatischen und ungesättigten Verbindungen. Z. Phys. 76, 628–648 (1932).

    Article  Google Scholar 

  32. 32

    Frost, A. A. & Musulin, B. J. A mnemonic device for molecular orbital energies. J. Chem. Phys. 21, 572–573 (1953).

    CAS  Article  Google Scholar 

  33. 33

    Zimmerman, H. E. On molecular orbital correlation diagrams, the occurrence of Möbius systems in cyclization reactions, and factors controlling ground- and excited-state reactions. J. Am. Chem. Soc. 88, 1564–1565 (1966).

    CAS  Article  Google Scholar 

  34. 34

    Yoon, Z. S., Oskua, A. & Kim, D. Möbius aromaticity and antiaromaticity in expanded porphyrins. Nature Chem. 1, 113–122 (2009).

    CAS  Article  Google Scholar 

  35. 35

    Higashino, T. et al. Möbius antiaromatic bisphosphorus complexes of [30]hexaphyrins. Angew. Chem. Int. Ed. 49, 4950–4954 (2010).

    CAS  Article  Google Scholar 

  36. 36

    Pacholska-Dudziak, E. et al. Palladium vacataporphyrin reveals conformational rearrangements involving Hückel and Möbius macrocyclic topologies. J. Am. Chem. Soc. 130, 6182–6195 (2008).

    CAS  PubMed  Article  Google Scholar 

  37. 37

    Herges, R. Topology in chemistry: designing Möbius molecules. Chem. Rev. 106, 4820–4842 (2006).

    CAS  PubMed  Article  Google Scholar 

  38. 38

    Rappaport, S. M. & Rzepa, H. S. Intrinsically chiral aromaticity. Rules incorporating linking number, twist, and writhe for higher-twist Möbius annulenes. J. Am. Chem. Soc. 130, 7613–7619 (2008).

    CAS  PubMed  Article  Google Scholar 

  39. 39

    Rzepa, H. S. Möbius aromaticity and delocalization. Chem. Rev. 105, 3697–3715 (2005).

    CAS  PubMed  Article  Google Scholar 

  40. 40

    Rzepa, H. S. A double-twist Möbius-aromatic conformation of [14]annulene. Org. Lett. 7, 4637–4639 (2005)

    CAS  PubMed  Article  Google Scholar 

  41. 41

    Wannere, C. S. et al. The geometry and electronic topology of higher-order charged Möbius annulenes. J. Phys. Chem. A 113, 11619–11629 (2009).

    CAS  PubMed  Article  Google Scholar 

  42. 42

    Mislow, K., Bunnenberg, E., Records, R., Wellman, K. & Djerassi, C. Inherently dissymmetric chromophores and circular dichroism. II J. Am. Chem. Soc. 85, 1342–1349 (1963).

    CAS  Article  Google Scholar 

  43. 43

    Lim, J. M., Yoon, M-C., Kim, K. S., Shin, J-Y. & Kim, D. in Handbook for Porphyrin Science Vol. 1 (eds Kadish, K. M., Smith, K. M. & Guilard, R.) 507–558 (World Scientific, 2010).

  44. 44

    Torrent-Sucarrat, M., Anglada, J. M. & Luis, J. M. Evaluation of the nonlinear optical properties for an expanded porphyrin Hückel–Möbius aromaticity switch. J. Chem. Phys. 137, 184306 (2012).

    PubMed  Article  CAS  Google Scholar 

  45. 45

    Li, Z. & Ram-Mohan L. R. Quantum mechanics on a Möbius ring: energy levels, symmetry, optical transitions, and level splitting in a magnetic field. Phys. Rev. B 85, 195438 (2012).

    Article  CAS  Google Scholar 

  46. 46

    Zhong, R-L. et al. Spiral intramolecular charge transfer and large first hyperpolarizability in Möbius cyclacenes: new insight into the localized π electrons. Chem. Phys. Chem. 13, 2349–2353 (2012).

    CAS  PubMed  Article  Google Scholar 

  47. 47

    Torrent-Sucarrat, M., Anglada, J. M. & Luis, J. M. Evaluation of the nonlinear optical properties for annulenes with Hückel and Möbius topologies. J. Chem. Theo. Comput. 7, 3935–3943 (2011).

    CAS  Article  Google Scholar 

  48. 48

    Chang, C-W. et al. Optical Möbius symmetry in metamaterials. Phys. Rev. Lett. 105, 235501 (2010).

    PubMed  Article  CAS  Google Scholar 

  49. 49

    Ioffe, L. B. et al. Topologically protected quantum bits using Josephson junction arrays. Nature 415, 503–506 (2002).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge The Academy of Finland (K.R., project no. 263256 and 265328) and the National Doctoral Program in Nanoscience, Finland (F.T., PhD Fellowship) for financial support. K.R. and F.T. thank G. Schaller and L. Kaufmann (Freie Universität Berlin, Germany) for performing some preliminary crystallization experiments.

Author information

Affiliations

Authors

Contributions

G.R.S. worked out the topological construction strategy, developed the syntheses, carried out the experiments and characterized the compounds. R.H. developed the topological strategy and directed the study. F.T. prepared the single crystals, collected the data and solved and refined the structure together with K.R. K.R. supervised the X-ray diffraction part of the work. Y.O. and J.S. performed the separation and CD measurement of the enantiomers. G.R.S., R.H., F.T. and K.R. wrote the manuscript.

Corresponding authors

Correspondence to Kari Rissanen or Rainer Herges.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2535 kb)

Supplementary information

Supplementary Movie (GIF 9842 kb)

Supplementary information

Crystallographic data for racemic compound 1 (CIF 627 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schaller, G., Topić, F., Rissanen, K. et al. Design and synthesis of the first triply twisted Möbius annulene. Nature Chem 6, 608–613 (2014). https://doi.org/10.1038/nchem.1955

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing