Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Single-molecule analysis of chirality in a multicomponent reaction network

Abstract

Single-molecule approaches to chemical reaction analysis can provide information that is not accessible by studying ensemble systems. Changes in the molecular structures of compounds tethered to the inner wall of a protein pore are known to affect the current carried through the pore by aqueous ions under a fixed applied potential. Here, we use this approach to study the substitution reactions of arsenic(III) compounds with thiols, stretching the limits of the protein pore technology to track the interconversion of seven reaction components in a network that comprises interconnected Walden cycles. Single-molecule pathway analysis of ‘allowed’ and ‘forbidden’ reactions reveals that sulfur–sulfur substitution occurs with stereochemical inversion at the arsenic centre. Hence, we demonstrate that the nanoreactor approach can be a valuable technique for the analysis of dynamic reaction systems of relevance to biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The αHL nanoreactor.
Figure 2: Assignment of current levels.
Figure 3: Analysis of the reaction network.
Figure 4: Transition counts and computed reaction rates.
Figure 5: The complete reaction network.

Similar content being viewed by others

References

  1. Bayley, H., Luchian, T., Shin, S-H. & Steffensen, M. B. in Single Molecules and Nanotechnology (eds Rigler, R. & Vogel, H.) Ch. 10, 251–277 (Springer, 2008).

    Book  Google Scholar 

  2. Luchian, T., Shin, S-H. & Bayley, H. Kinetics of a three-step reaction observed at the single molecule level. Angew. Chem. Int. Ed. 42, 1926–1929 (2003).

    Article  CAS  Google Scholar 

  3. Luchian, T., Shin, S-H. & Bayley, H. Single-molecule covalent chemistry with spatially separated reactants. Angew. Chem. Int. Ed. 42, 3766–3771 (2003).

    Article  CAS  Google Scholar 

  4. Shin, S-H. & Bayley, H. Stepwise growth of a single polymer chain. J. Am. Chem. Soc. 127, 10462–10463 (2005).

    Article  CAS  Google Scholar 

  5. Loudwig, S. & Bayley, H. Photoisomerization of an individual azobenzene molecule in water: an on–off switch triggered by light at a fixed wavelength. J. Am. Chem. Soc. 128, 12404–12405 (2006).

    Article  CAS  Google Scholar 

  6. Shin, S-H., Steffensen, M. B., Claridge, T. D. W. & Bayley, H. Formation of a chiral center and pyramidal inversion at the single-molecule level. Angew. Chem. Int. Ed. 46, 7412–7416 (2007).

    Article  CAS  Google Scholar 

  7. Lu, S., Li, W-W., Rotem, D., Mikhailova, E. & Bayley, H. A primary hydrogen–deuterium isotope effect observed at the single molecule level. Nature Chem. 2, 921–928 (2010).

    Article  CAS  Google Scholar 

  8. Wu, H. C. & Bayley, H. Single-molecule detection of nitrogen mustards by covalent reaction within a protein nanopore. J. Am. Chem. Soc. 130, 6813–6819 (2008).

    Article  CAS  Google Scholar 

  9. Shin, S-H., Luchian, T., Cheley, S., Braha, O. & Bayley, H. Kinetics of a reversible covalent-bond forming reaction observed at the single molecule level. Angew. Chem. Int. Ed. 41, 3707–3709 (2002).

    Article  CAS  Google Scholar 

  10. Shen, S., Li, X-F., Cullen, W. R., Weinfeld, M. & Le, X. C. Arsenic binding to proteins. Chem. Rev. 113, 7769–7792 (2013).

    Article  CAS  Google Scholar 

  11. Liu, J. X., Zhou, G. B., Chen, S. J. & Chen, Z. Arsenic compounds: revived ancient remedies in the fight against human malignancies. Curr. Opin. Chem. Biol. 16, 92–98 (2012).

    Article  CAS  Google Scholar 

  12. Argos, M., Ahsan, H. & Graziano, J. H. Arsenic and human health: epidemiologic progress and public health implications. Rev. Environ. Health 27, 191–195 (2012).

    Article  CAS  Google Scholar 

  13. Messens, J. & Silver, S. Arsenate reduction: thiol cascade chemistry with convergent evolution. J. Mol. Biol. 362, 1–17 (2006).

    Article  CAS  Google Scholar 

  14. Adams, S. R. & Tsien, R. Y. Preparation of the membrane-permeant biarsenicals FlAsH-EDT2 and ReAsH-EDT2 for fluorescent labeling of tetracysteine-tagged proteins. Nature Protoc. 3, 1527–1534 (2008).

    Article  CAS  Google Scholar 

  15. Lloyd, N. C., Morgan, H. W., Nicholson, B. K. & Ronimus, R. S. The composition of Ehrlich's salvarsan: resolution of a century-old debate. Angew. Chem. Int. Ed. 44, 941–944 (2005).

    Article  CAS  Google Scholar 

  16. Burchmore, R. J., Ogbunude, P. O., Enanga, B. & Barrett, M. P. Chemotherapy of human African trypanosomiasis. Curr. Pharm. Des. 8, 256–267 (2002).

    Article  Google Scholar 

  17. Zhang, X. W. et al. Arsenic trioxide controls the fate of the PML-RARalpha oncoprotein by directly binding PML. Science 328, 240–243 (2010).

    Article  CAS  Google Scholar 

  18. Jennewein, M. et al. Vascular imaging of solid tumors in rats with a radioactive arsenic-labeled antibody that binds exposed phosphatidylserine. Clin. Cancer Res. 14, 1377–1385 (2008).

    Article  CAS  Google Scholar 

  19. Goldman, M. & Dacre, J. C. Lewisite: its chemistry, toxicology, and biological effects. Rev. Environ. Contam. Toxicol. 110, 75–115 (1989).

    Article  CAS  Google Scholar 

  20. Henriksson, J., Johannisson, A., Bergqvist, P. A. & Norrgren, L. The toxicity of organoarsenic-based warfare agents: in vitro and in vivo studies. Arch. Environ. Contam. Toxicol. 30, 213–219 (1996).

    Article  CAS  Google Scholar 

  21. Senkler, G. H. & Mislow, K. The barrier to pyramidal inversion in ethylmethylphenylarsine. J. Am. Chem. Soc. 94, 291 (1972).

    Article  CAS  Google Scholar 

  22. Baechler, R. D., Casey, J. P., Cook, R. J., Senkler, G. H. & Mislow, K. Effect of ligand electronegativity on the inversion barriers of arsines. J. Am. Chem. Soc. 94, 2859–2861 (1972).

    Article  CAS  Google Scholar 

  23. Dill, K., Huang, L., Bearden, D. W., McGown, E. L. & O'Connor, R. J. Activation energies and formation rate constants for arsenical-antidote adducts as determined by dynamic NMR spectroscopy. Chem. Res. Toxicol. 4, 295–299 (1991).

    Article  CAS  Google Scholar 

  24. Serves, S. V., Charalambidis, Y. C., Sotiropoulos, D. N. & Ioannou, P. V. Reaction of arsenic(III) oxide, arsenous and arsenic acids with thiols. Phosphorus Sulfur Silicon 105, 109–116 (1995).

    Article  CAS  Google Scholar 

  25. Richard, E. A. & Miller, C. Steady-state coupling of ion-channel conformations to a transmembrane ion gradient. Science 247, 1208–1210 (1990).

    Article  CAS  Google Scholar 

  26. Hunt, R. A. & Otto, S. Dynamic combinatorial libraries: new opportunities in systems chemistry. Chem. Commun. 47, 847–858 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Medical Research Council and a European Research Council advanced grant. H.B. was the holder of a Royal Society–Wolfson Research Merit Award. M.B.S. was the holder of a Ruth L. Kirschstein NIH Postdoctoral Fellowship (F32L078236).

Author information

Authors and Affiliations

Authors

Contributions

M.B.S. and D.R. contributed equally to this work. M.B.S. and H.B. designed the research. M.B.S. performed the experimental work. M.B.S., D.R. and H.B. analysed data and wrote the manuscript.

Corresponding author

Correspondence to Hagan Bayley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 778 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steffensen, M., Rotem, D. & Bayley, H. Single-molecule analysis of chirality in a multicomponent reaction network. Nature Chem 6, 603–607 (2014). https://doi.org/10.1038/nchem.1949

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1949

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing