Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Switchable enantioseparation based on macromolecular memory of a helical polyacetylene in the solid state

Abstract

In the chromatographic separation of enantiomers the order of elution is determined by the strength of diasteromeric interactions between the components of the mixture and a chiral stationary phase. For analytical purposes, it is ideal to have the minor component elute first, whereas in the preparative mode a faster elution of the major component is desirable. Here we describe a stationary phase constructed from a polyacetylene that bears 2,2′-bisphenol-derived side chains in which chirality can be switched in the solid state prior to use. Both the macromolecular helicity of the polymer backbone and the axial chirality of the side chains can be switched in the solid state by interaction with a chiral alcohol, but importantly are maintained after removal of the chiral alcohol because of a memory effect. The chiral stationary phase thus prepared was used to separate the enantiomers of trans-stilbene oxide with the enantiomer elution order determined by the preseparation treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reversible switching and memory of macromolecular helicity of poly-1 and its axial chirality at the pendants in the solid state.
Figure 2: Circular dichroism and absorption spectra of poly-1.
Figure 3: Structure of right-handed helical poly-1.
Figure 4: Switchable enantioseparation as a CSP for HPLC.

Similar content being viewed by others

References

  1. Gellman, S. H. Foldamers: a manifesto. Acc. Chem. Res. 31, 173–180 (1998).

    Google Scholar 

  2. Green, M. M. et al. The macromolecular route to chiral amplification. Angew. Chem. Int. Ed. 38, 3138–3154 (1999).

    Article  CAS  Google Scholar 

  3. Hill, D. J., Mio, M. J., Prince, R. B., Hughes, T. S. & Moore, J. S. A field guide to foldamers. Chem. Rev. 101, 3893–4011 (2001).

    Article  CAS  Google Scholar 

  4. Nakano, T. & Okamoto, Y. Synthetic helical polymers: conformation and function. Chem. Rev. 101, 4013–4038 (2001).

    Article  CAS  Google Scholar 

  5. Cornelissen, J. J. L. M., Rowan, A. E., Nolte, R. J. M. & Sommerdijk, N. A. J. M. Chiral architectures from macromolecular building blocks. Chem. Rev. 101, 4039–4070 (2001).

    Article  CAS  Google Scholar 

  6. Fujiki, M. Optically active polysilylenes: state-of-the-art chiroptical polymers. Macromol. Rapid Commun. 22, 539–563 (2001).

    Article  CAS  Google Scholar 

  7. Lam, J. W. Y. & Tang, B. Z. Functional polyacetylenes. Acc. Chem. Res. 38, 745–754 (2005).

    Article  CAS  Google Scholar 

  8. Hecht, S. & Huc, I. Foldamers (Wiley-VCH, 2007).

  9. Rudick, J. G. & Percec, V. Induced helical backbone conformations of self-organizable dendronized polymers. Acc. Chem. Res. 41, 1641–1652 (2008).

    Article  CAS  Google Scholar 

  10. Yashima, E., Maeda, K., Iida, H., Furusho, Y. & Nagai, K. Helical polymers: synthesis, structures, and functions. Chem. Rev. 109, 6102–6211 (2009).

    Article  CAS  Google Scholar 

  11. Yashima, E., Maeda, K. & Okamoto, Y. Memory of macromolecular helicity assisted by interaction with achiral small molecules. Nature 399, 449–451 (1999).

    Article  CAS  Google Scholar 

  12. Maeda, K., Morino, K., Okamoto, Y., Sato, T. & Yashima, E. Mechanism of helix induction on a stereoregular poly((4-carboxyphenyl)acetylene) with chiral amines and memory of the macromolecular helicity assisted by interaction with achiral amines. J. Am. Chem. Soc. 126, 4329–4342 (2004).

    Article  CAS  Google Scholar 

  13. Onouchi, H., Kashiwagi, D., Hayashi, K., Maeda, K. & Yashima, E. Helicity induction on poly(phenylacetylene)s bearing phosphonic acid pendants with chiral amines and memory of the macromolecular helicity assisted by interaction with achiral amines in dimethyl sulfoxide. Macromolecules 37, 5495–5503 (2004).

    Article  CAS  Google Scholar 

  14. Miyagawa, T. et al. Dual memory of enantiomeric helices in a polyacetylene induced by a single enantiomer. J. Am. Chem. Soc. 127, 5018–5019 (2005).

    Article  CAS  Google Scholar 

  15. Maeda, K., Tamaki, S., Tamura, K. & Yashima, E. Helicity induction and memory of the macromolecular helicity in a polyacetylene bearing a biphenyl pendant. Chem. Asian J. 3, 614–624 (2008).

    Article  CAS  Google Scholar 

  16. Furusho, Y., Kimura, T., Mizuno, Y. & Aida, T. Chirality-memory molecule: a D2-symmetric fully substituted porphyrin as a conceptually new chirality sensor. J. Am. Chem. Soc. 119, 5267–5268 (1997).

    Article  CAS  Google Scholar 

  17. Bellacchio, E. et al. Template-imprinted chiral porphyrin aggregates. J. Am. Chem. Soc. 120, 12353–12354 (1998).

    Article  CAS  Google Scholar 

  18. Prins, L. J., De Jong, F., Timmerman, P. & Reinhoudt, D. N. An enantiomerically pure hydrogen-bonded assembly. Nature 408, 181–184 (2000).

    Article  CAS  Google Scholar 

  19. Kubo, Y. et al. Chirality-transfer control using a heterotopic zinc(II) porphyrin dimer. J. Am. Chem. Soc. 123, 12700–12701 (2001).

    Article  CAS  Google Scholar 

  20. Wilson, A. J., Masuda, M., Sijbesma, R. P. & Meijer, E. W. Chiral amplification in the transcription of supramolecular helicity into a polymer backbone. Angew. Chem. Int. Ed. 44, 2275–2279 (2005).

    Article  CAS  Google Scholar 

  21. Ikeda, C. et al. Helicity induction and two-photon absorbance enhancement in zinc(II) meso–meso linked porphyrin oligomers via intermolecular hydrogen bonding interactions. J. Am. Chem. Soc. 127, 534–535 (2005).

    Article  CAS  Google Scholar 

  22. Ousaka, N., Inai, Y. & Kuroda, R. Chain-terminus triggered chiral memory in an optically inactive 310-helical peptide. J. Am. Chem. Soc. 130, 12266–12267 (2008).

    Article  CAS  Google Scholar 

  23. Buono, A. M., Immediata, I., Rizzo, P. & Guerra, G. Detection and memory of nonracemic molecules by a racemic host polymer film. J. Am. Chem. Soc. 129, 10992–10993 (2007).

    Article  CAS  Google Scholar 

  24. Guadagno, L. et al. Processing, thermal stability and morphology of chiral sensing syndiotactic polystyrene films. J. Mater. Chem. 18, 567–572 (2008).

    Article  CAS  Google Scholar 

  25. Saxena, A. et al. Helical polymer command surface: thermodriven chiroptical transfer and amplification in binary polysilane film system. Macromolecules 37, 3081–3083 (2004).

    Article  CAS  Google Scholar 

  26. Maeda, K., Hatanaka, K. & Yashima, E. Helix induction in an optically inactive poly[(4-carboxyphenyl)acetylene] film with chiral amines. Mendeleev Commun. 14, 231–233 (2004).

    Article  Google Scholar 

  27. Randazzo, R., Mammana, A., D'Urso, A., Lauceri, R. & Purrello, R. Reversible ‘chiral memory’ in ruthenium tris(phenanthroline)-anionic porphyrin complexes. Angew. Chem. Int. Ed. 47, 9879–9882 (2008).

    Article  CAS  Google Scholar 

  28. Helmich, F., Lee, C. C., Schenning, A. P. H. J. & Meijer, E. W. Chiral memory via chiral amplification and selective depolymerization of porphyrin aggregates. J. Am. Chem. Soc. 132, 16753–16755 (2010).

    Article  CAS  Google Scholar 

  29. Zhang, W., Jin, W., Fukushima, T., Ishii, N. & Aida, T. Dynamic or nondynamic? Helical trajectory in hexabenzocoronene nanotubes biased by a detachable chiral auxiliary. J. Am. Chem. Soc. 135, 114–117 (2013).

    Article  CAS  Google Scholar 

  30. Okamoto, M. Reversal of elution order during the chiral separation in high performance liquid chromatography. J. Pharm. Biomed. Anal. 27, 401–407 (2002).

    Article  CAS  Google Scholar 

  31. Perry, J. A., Rateike, J. D. & Szczerba, T. J. Eluting trace components before major constituents: I. Sensitivity enhancement in analytical determinations of optical purity. J. Chromatogr. A 389, 57–64 (1987).

    Article  CAS  Google Scholar 

  32. Sakurai, S. I., Okoshi, K., Kumaki, J. & Yashima, E. Two-dimensional hierarchical self-assembly of one-handed helical polymers on graphite. Angew. Chem. Int. Ed. 45, 1245–1248 (2006).

    Article  CAS  Google Scholar 

  33. Sakurai, S. I., Okoshi, K., Kumaki, J. & Yashima, E. Two-dimensional surface chirality control by solvent-induced helicity inversion of a helical polyacetylene on graphite. J. Am. Chem. Soc. 128, 5650–5651 (2006).

    Article  CAS  Google Scholar 

  34. Shudo, A., Hori, K., Ikeda, T., Kimizuka N. & Tanaka, K. Design of a dynamic polymer interface for chiral discrimination. J. Am. Chem. Soc. 135, 10282–10285 (2013).

    Article  Google Scholar 

  35. Okamoto, Y., Aburatani, R. & Hatada, K. Chromatographic chiral resolution: XIV. Cellulose tribenzoate derivatives as chiral stationary phases for high-performance liquid chromatography. J. Chromatogr. A 389, 95–102 (1987).

    Article  CAS  Google Scholar 

  36. Okamoto, Y., Kawashima, M. & Hatada, K. Chromatographic resolution: XI. Controlled chiral recognition of cellulose triphenylcarbamate derivatives supported on silica gel. J. Chromatogr. A 363, 173–186 (1986).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a grant from the Adaptable and Seamless Technology Transfer Program through Target-driven R&D from the Japan Science and Technology Agency, Grant-in-Aid for Scientific Research (S) from the Japan Society for the Promotion of Science and by the Nanotechnology Platform Program (Molecule and Material Synthesis) of the Ministry of Education, Culture, Sports, Science and Technology, Japan. We acknowledge H. Iida for his help in the measurements of the VCD spectra.

Author information

Authors and Affiliations

Authors

Contributions

K.M. conceived the project and designed the experiments. K.M. and E.Y. directed the research. K.S. principally performed the experiments. K.S. and T.I. performed experiments on enantioseparations. K.M. and E.Y. co-wrote the manuscript. All authors discussed the results and edited the manuscript.

Corresponding authors

Correspondence to Eiji Yashima or Katsuhiro Maeda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2229 kb)

Supplementary information

Crystallographic data for compound 1 (CIF 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimomura, K., Ikai, T., Kanoh, S. et al. Switchable enantioseparation based on macromolecular memory of a helical polyacetylene in the solid state. Nature Chem 6, 429–434 (2014). https://doi.org/10.1038/nchem.1916

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1916

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing