Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Unusual structure, bonding and properties in a californium borate

Subjects

Abstract

The participation of the valence orbitals of actinides in bonding has been debated for decades. Recent experimental and computational investigations demonstrated the involvement of 6p, 6d and/or 5f orbitals in bonding. However, structural and spectroscopic data, as well as theory, indicate a decrease in covalency across the actinide series, and the evidence points to highly ionic, lanthanide-like bonding for late actinides. Here we show that chemical differentiation between californium and lanthanides can be achieved by using ligands that are both highly polarizable and substantially rearrange on complexation. A ligand that suits both of these desired properties is polyborate. We demonstrate that the 5f, 6d and 7p orbitals are all involved in bonding in a Cf(III) borate, and that large crystal-field effects are present. Synthetic, structural and spectroscopic data are complemented by quantum mechanical calculations to support these observations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Graphical representations of Cf[B6O8(OH)5].
Figure 2: The magnetic susceptibility obtained from a polycrystalline sample of Cf[B6O8(OH)5] (open circles) compared with the fit (solid line) obtained using a modified Curie–Weiss law.
Figure 3: Room-temperature solid-state absorption spectrum of Cf[B6O8(OH)5] obtained from a cluster of crystals showing ff transitions that are diagnostic for Cf(III).
Figure 4: Photoluminescence spectra of Cf[B6O8(OH)5] on excitation with 420 nm light as a function of temperature.

Similar content being viewed by others

References

  1. Sykora, R. E., Assefa, Z., Haire, R. G. & Albrecht-Schmitt, T. E. The first structural determination of a trivalent californium compound with oxygen coordination. Inorg. Chem. 45, 475–477 (2006).

    Article  CAS  Google Scholar 

  2. Burns, J. H., Peterson, J. R. & Baybarz, R. D. Hexagonal and orthorhombic crystal structures of californium trichloride. J. Inorg. Nucl. Chem. 35, 1171–1177 (1973).

    Article  CAS  Google Scholar 

  3. Laubereau, P. G. & Burns, J. H. Microchemical preparation of tricyclopentadienyl compounds of berkelium, californium, and some lanthanide elements. Inorg. Chem. 9, 1091–1095 (1970).

    Article  CAS  Google Scholar 

  4. Galbis, E. et al. Solving the hydration structure of the heaviest actinide aqua ion known: the californium(III) case. Angew. Chem. Int. Ed. 49, 3811–3815 (2010).

    Article  CAS  Google Scholar 

  5. Lindqvist-Reis, P. et al. The structures and optical spectra of hydrated transplutonium ions in the solid state and solution. Angew. Chem. Int. Ed. 46, 919–922 (2007).

    Article  CAS  Google Scholar 

  6. Apostolidis, C. et al. [An(H2O)9][CF3SO3]3 (An=U–Cm, Cf): Exploring their stability, structural chemistry, and magnetic behavior by experiment and theory. Angew. Chem. Int. Ed. 49, 6343–6347 (2010).

    Article  CAS  Google Scholar 

  7. Skanthakumar, S. Antonio, M. R., Wilson, R. E. & Soderholm, L. The curium aqua ion. Inorg. Chem. 46, 3485–3491 (2007).

    Article  CAS  Google Scholar 

  8. Kaltsoyannis, N. Does covalency increase or decrease across the actinide series? Implications for minor actinide partitioning. Inorg. Chem. 52, 3407–3413 (2013).

    Article  CAS  Google Scholar 

  9. Neidig, M. L., Clark, D. L. & Martin, R. L. Covalency in f-element complexes. Coord. Chem. Rev. 257, 394–406 (2013).

    Article  CAS  Google Scholar 

  10. Polinski, M. J. et al. Differentiating between trivalent lanthanides and actinides. J. Am. Chem. Soc. 134, 10682–10692 (2012).

    Article  CAS  Google Scholar 

  11. Ruiz-Martínez, A., Casanova, D. & Alverz, S. Polyhedral structures with an odd number of vertices: nine-coordinate metal compounds. Chem. Eur. J. 14, 1291–1303 (2008).

    Article  Google Scholar 

  12. Ruiz-Martínez, A. & Alverz, S. Stereochemistry of compounds with coordination number ten. Chem. Eur. J. 15, 7470–7480 (2009).

    Article  Google Scholar 

  13. Li, L. et al. Synthesis of rare earth polyborates using molten boric acid as a flux. Chem. Mater. 14, 4963–4968 (2002).

    Article  CAS  Google Scholar 

  14. Castro-Rodriguez, I. et al. Uranium tri-aryloxide derivatives supported by triazacyclononane: engendering a reactive uranium(III) center with a single pocket for reactivity. J. Am. Chem. Soc. 125, 4565–4571 (2003)

    Article  CAS  Google Scholar 

  15. Skanthakumar, S., Soderholm, L. & Movshovich, R. Magnetic properties of Dy in Pb2Sr2DyCu3O8 . J. Alloy Compd. 303, 298–302 (2000).

    Article  Google Scholar 

  16. Staub, U. et al. Valence determination as a function of doping in PrBa2Cu3O7- δ . Phys. Rev. B. 61, 1548 (2000).

    Article  CAS  Google Scholar 

  17. Fields, P. R., Wybourne, B. G. & Carnall, W. T. The Electronic Energy Levels of the Heavy Actinides Bk3+(5f 8), Cf 3+(5f 9), Es 3+(5f 10), and Fm3+(5f 11) Report ANL-6911 (Argonne National Laboratory AEC Research and Development, US Atomic Energy Commission, 1964).

    Google Scholar 

  18. Campos, A. F., Meijerink, A., de Mellow Donegá, C. & Malta, O. L. A theoretical calculation of vibronic coupling strength: the trend in the lanthanide ion series and the host-lattice dependence. J. Phys. Chem. Solids 61, 1489–1498 (2000).

    Article  CAS  Google Scholar 

  19. Legendziewicz, J. Spectroscopy and structure of selected lanthanide polymeric and monomeric systems. J. Alloy Compd. 300, 71–87 (2000).

    Article  Google Scholar 

  20. Perdew, J. P., Ernzerhof, M. & Burke, K. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 119, 9982–9985 (1996).

    Article  Google Scholar 

  21. Perdew, J. P., Burke, V. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  22. Roos, B. O., Taylor, P. R. & Siegbahn, P. E. M. A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach. Chem. Phys. 48, 157–173 (1980).

    Article  CAS  Google Scholar 

  23. Kohout, M. & Savin, A. Atomic shell structure and electron numbers. Int. J. Quant. Chem. 60, 875–882 (1996).

    Article  CAS  Google Scholar 

  24. Spek, A. L. Single-crystal structure validation with the program PLATON. J. Appl. Cryst. 36, 7–13 (2003).

    Article  CAS  Google Scholar 

  25. TURBOMOLE v6.4 2012 (http://www.turbomole.com, TURBOMOLE GmbH, Karlsruhe, Germany, 2012).

  26. Becke, A. D. & Edgecombe, K. E. A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 92, 5397–5403 (1990).

    Article  CAS  Google Scholar 

  27. Schäfer, A., Huber, C. & Ahlrichs, R. Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J. Chem. Phys. 100, 5829–5835 (1994).

    Article  Google Scholar 

  28. Cao, X. & Dolg, M. Segmented contraction scheme for small-core actinide pseudopotential basis sets. J. Molec. Struct. (THEOCHEM), 673, 203–209 (2004).

    Article  CAS  Google Scholar 

  29. Cao, X., Dolg, M. & Stoll, H. Valence basis sets for relativistic energy-consistent small-core actinide pseudopotentials. J. Chem. Phys. 118, 487–497 (2003).

    Article  CAS  Google Scholar 

  30. Frisch, M. J. et al. Gaussian 09, Revision C.01 (Gaussian, Inc., Wallingford, Connecticut, 2011).

  31. Reed, A. E., Curtiss, L. A. & Weinhold, F. Intermolecular interactions from a natural bond orbital, donor–acceptor viewpoint. Chem. Rev. 88, 899–926 (1988).

    Article  CAS  Google Scholar 

  32. Weinhold, F. & Landis, C. R. Valency and Bonding (Cambridge Univ. Press, 2005).

    Book  Google Scholar 

  33. DGrid, version 4.6 (Kohout, M., Radebeul, 2011).

  34. Silvi, B. & Savin, A. Classification of chemical bonds based on topological analysis of electron localization functions. Nature 371, 683–686 (1994).

    Article  CAS  Google Scholar 

  35. Aquilante, F. et al. MOLCAS 7: The next generation. J. Comput. Chem. 31, 224–247 (2010).

    Article  CAS  Google Scholar 

  36. Tsuchiya, T., Abe, M., Nakajima, T. & Hirao, K. Accurate relativistic Gaussian basis sets for H through Lr determined by atomic self-consistent field calculations with the third-order Douglas–Kroll approximation. J. Chem. Phys. 115, 4463–4472 (2001).

    Article  CAS  Google Scholar 

  37. Douglas, N. & Kroll, N. M. Quantum electrodynamical corrections to fine-structure of helium. Ann. Phys. 82, 89–155 (1974).

    Article  CAS  Google Scholar 

  38. Hess, B. A. Relativistic electronic-structure calculations employing a 2-component no-pair formalism with external-field projection operators. Phys. Rev. A 33, 3742–3748 (1986).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for support provided by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, Heavy Elements Chemistry Program, US Department of Energy under Grants DE-SC0002215, DE-FG02-13ER16414, DE-SC002183 (N.P., R.M. and L.G.), and DE-AC02-06CH11357 (D.A.D., G.L. and L.S.), and for support from the National Science Foundation CAREER award DMR-0955353 (M.S.). Collaborative work is supported via the Helmholtz Association, Grant Number VH-NG-815. The 249Cf was provided to Florida State University via the Isotope Development and Production for Research and Applications Program through the Radiochemical Engineering and Development Center at ORNL and was purchased via the Gregory R. Choppin Chair Endowment.

Author information

Authors and Affiliations

Authors

Contributions

M.J.P. and T.E.A-S. conceived, designed and carried out the synthetic and crystallographic experiments. R.M., N.P., L.G., E.B.G. and D.A.D. designed and carried out the quantum mechanical study. J.T.S., J.N.C. and T.G.P. carried out low-temperature spectroscopic experiments. E.V.A. and W.D. were involved in the crystallographic analysis. G.L. analysed all the spectroscopic experiments. M.S. designed and carried out the magnetic experiments and, along with S.S. and L.S., analysed the magnetic data. T.D.G. and K.L.K. carried out the photoluminescence lifetime measurements. S.M.V.C. prepared and manipulated the original stock of 249Cf at ORNL. All authors discussed and co-wrote the manuscript.

Corresponding author

Correspondence to Thomas E. Albrecht-Schmitt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1451 kb)

Supplementary information

Crystallographic data for Cf[B6O8(OH)5] (CIF 14 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polinski, M., Garner, E., Maurice, R. et al. Unusual structure, bonding and properties in a californium borate. Nature Chem 6, 387–392 (2014). https://doi.org/10.1038/nchem.1896

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1896

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing