Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Efficient room-temperature synthesis of a highly strained carbon nanohoop fragment of buckminsterfullerene

Abstract

Warped carbon-rich molecules have captured the imagination of scientists across many disciplines. Owing to their promising materials properties and challenging synthesis, strained hydrocarbons are attractive targets that push the limits of synthetic methods and molecular design. Herein we report the synthesis and characterization of [5]cycloparaphenylene ([5]CPP), a carbon nanohoop that can be envisaged as an open tubular fragment of C60, the equator of C70 fullerene and the unit cycle of a [5,5] armchair carbon nanotube. Given its calculated 119 kcal mol−1 strain energy and severely distorted benzene rings, this synthesis, which employs a room-temperature macrocyclization of a diboronate precursor, single-electron reduction and elimination, is remarkably mild and high yielding (27% over three steps). Single-crystal X-ray diffraction data were obtained to confirm its geometry and previously disputed benzenoid character. First and second pseudoreversible oxidation and reduction events were observed via cyclic voltammetry. The ease of synthesis, high solubility and narrowest optical HOMO/LUMO gap of any para-polyphenylene synthesized make [5]CPP a desirable new material for organic electronics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Prototypical distressed hydrocarbons that have succumbed to rational organic synthesis.
Figure 2: A rapid synthetic route to [5]CPP.
Figure 3: Analysis of [5]CPP by X-ray diffraction crystallography.
Figure 4: Ultraviolet–visible absorbance data for [5]CPP.
Figure 5: Cyclic voltammetry of [5]CPP in THF.

Similar content being viewed by others

References

  1. Eaton, P. E. & Cole, T. W. Cubane. J. Am. Chem. Soc. 86, 3157–3158 (1964).

    Article  CAS  Google Scholar 

  2. Lawton, R. G. & Barth, W. E. Synthesis of corannulene. J. Am. Chem. Soc. 93, 1730–1745 (1971).

    Article  CAS  Google Scholar 

  3. Dauben, W. G. & Cargill, R. L. Photochemical transformations, VIII: the isomerization of Δ2,5-bicyclo[2.2.1]heptadiene to quadricyclo[2.2.1.02,6-03,5]heptane (quadricyclene). Tetrahedron 15, 197–201 (1961).

    Article  CAS  Google Scholar 

  4. Kammermeier, S., Jones, P. G. & Herges, R. Ring-expanding metathesis of tetradehydro-anthracene—synthesis and structure of a tubelike, fully conjugated hydrocarbon. Angew. Chem. Int. Ed. Engl. 35, 2669–2671 (1996).

    Article  CAS  Google Scholar 

  5. Kane, V. V., Wolf, A. D. & Jones, M. [6]Paracyclophane. J. Am. Chem. Soc. 96, 2643–2644 (1974).

    Article  CAS  Google Scholar 

  6. Scott, L. T. et al. A rational chemical synthesis of C60 . Science 295, 1500–1503 (2002).

    Article  CAS  Google Scholar 

  7. Hopf, H. Classics in Hydrocarbon Chemistry (Wiley-VCH, 2000).

    Google Scholar 

  8. Scott, L. T. Conjugated belts and nanorings with radially oriented p orbitals. Angew. Chem. Int. Ed. 42, 4133–4135 (2003).

    Article  CAS  Google Scholar 

  9. Parekh, V. C. & Guha, P. C. Synthesis of p,p-diphenylene disulfide. J. Indian Chem. Soc. 11, 95–100 (1934).

    CAS  Google Scholar 

  10. Yamago, S., Watanabe, Y. & Iwamoto, T. Synthesis of [8]cycloparaphenylene from a square-shaped tetranuclear platinum complex. Angew. Chem. Int. Ed. 49, 757–759 (2010).

    Article  CAS  Google Scholar 

  11. Omachi, H., Matsuura, S., Segawa, Y. & Itami, K. A modular and size-selective synthesis of [n]cycloparaphenylenes: a step toward the selective synthesis of [n,n] single-walled carbon nanotubes. Angew. Chem. Int. Ed. 49, 10202–10205 (2010).

    Article  CAS  Google Scholar 

  12. Jasti, R., Bhattacharjee, J., Neaton, J. B. & Bertozzi, C. R. Synthesis, characterization, and theory of [9]-, [12]-, and [18]cycloparaphenylene: carbon nanohoop structures. J. Am. Chem. Soc. 130, 17646–17647 (2008).

    Article  CAS  Google Scholar 

  13. Srinivasan, M., Sankararaman, S., Hopf, H. & Varghese, B. Synthesis of buta-1,3-diyne-bridged macrocycles with (Z)-1,4-diethynyl-1,4-dimethoxycyclohexa-2,5-diene as the building block. Eur. J. Org. Chem. 2003, 660–665 (2003).

    Article  Google Scholar 

  14. Xia, J. & Jasti, R. Synthesis, characterization, and crystal structure of [6]cycloparaphenylene. Angew. Chem. Int. Ed. 51, 2474–2476 (2012).

    Article  CAS  Google Scholar 

  15. Golder, M. R., Wong, B. M. & Jasti, R. Photophysical and theoretical investigations of the [8]cycloparaphenylene radical cation and its charge-resonance dimer. Chem. Sci. 4, 4285–4291 (2013).

    Article  CAS  Google Scholar 

  16. Zabula, A. V., Filatov, A. S., Xia, J., Jasti, R. & Petrukhina, M. A. Tightening of the nanobelt upon multielectron reduction. Angew. Chem. Int. Ed. 52, 5033–5036 (2013).

    Article  CAS  Google Scholar 

  17. Iwamoto, T., Watanabe, Y., Sadahiro, T., Haino, T. & Yamago, S. Size-selective encapsulation of C60 by [10]cycloparaphenylene: formation of the shortest fullerene-peapod. Angew. Chem. Int. Ed. 50, 8342–8344 (2011).

    Article  CAS  Google Scholar 

  18. Xia, J., Bacon, J. W. & Jasti, R. Gram-scale synthesis and crystal structures of [8]- and [10]CPP, and the solid-state structure of C60@[10]CPP. Chem. Sci. 3, 3018–3021 (2012).

    Article  CAS  Google Scholar 

  19. Hirst, E. S. & Jasti, R. Bending benzene: syntheses of [n]cycloparaphenylenes. J. Org. Chem. 77, 10473–10478 (2012).

    Article  CAS  Google Scholar 

  20. Omachi, H., Nakayama, T., Takahashi, E., Segawa, Y. & Itami, K. Initiation of carbon nanotube growth by well-defined carbon nanorings. Nature Chem. 5, 572–576 (2013).

    Article  CAS  Google Scholar 

  21. Darzi, E. R., Sisto, T. J. & Jasti, R. Selective syntheses of [7]–[12]cycloparaphenylenes using orthogonal Suzuki–Miyaura cross-coupling reactions. J. Org. Chem. 77, 6624–6628 (2012).

    Article  CAS  Google Scholar 

  22. Iwamoto, T., Watanabe, Y., Sakamoto, Y., Suzuki, T. & Yamago, S. Selective and random syntheses of [n]cycloparaphenylenes (n=8–13) and size dependence of their electronic properties. J. Am. Chem. Soc. 133, 8354–8361 (2011).

    Article  CAS  Google Scholar 

  23. Sisto, T. J., Golder, M. R., Hirst, E. S. & Jasti, R. Selective synthesis of strained [7]cycloparaphenylene: an orange-emitting fluorophore. J. Am. Chem. Soc. 133, 15800–15802 (2011).

    Article  CAS  Google Scholar 

  24. Kayahara, E., Iwamoto, T., Suzuki, T. & Yamago, S. Selective synthesis of [6]-, [8]-, and [10]cycloparaphenylenes. Chem. Lett. 42, 621–623 (2013).

    Article  CAS  Google Scholar 

  25. Kayahara, E., Sakamoto, Y., Suzuki, T. & Yamago, S. Selective synthesis and crystal structure of [10]cycloparaphenylene. Org. Lett. 14, 3284–3287 (2012).

    Article  CAS  Google Scholar 

  26. Sibbel, F., Matsui, K., Segawa, Y., Studer, A. & Itami, K. Selective synthesis of [7]- and [8]cycloparaphenylenes. Chem. Commun. 50, 954–956 (2013).

    Article  Google Scholar 

  27. Segawa, Y. et al. [9]Cycloparaphenylene: nickel-mediated synthesis and crystal structure. Chem. Lett. 40, 423–425 (2011).

    Article  CAS  Google Scholar 

  28. Segawa, Y. et al. Concise synthesis and crystal structure of [12]cycloparaphenylene. Angew. Chem. Int. Ed. 50, 3244–3248 (2011).

    Article  CAS  Google Scholar 

  29. Ishii, Y. et al. Size-selective synthesis of [9]–[11] and [13]cycloparaphenylenes. Chem. Sci. 3, 2340–2345 (2012).

    Article  CAS  Google Scholar 

  30. Hitosugi, S., Nakanishi, W., Yamasaki, T. & Isobe, H. Bottom-up synthesis of finite models of helical (n,m)-single-wall carbon nanotubes. Nature Commun. 2, 492 (2011).

    Article  Google Scholar 

  31. Yagi, A., Segawa, Y. & Itami, K. Synthesis and properties of [9]cyclo-1,4-naphthylene: a π-extended carbon nanoring. J. Am. Chem. Soc. 134, 2962–2965 (2012).

    Article  CAS  Google Scholar 

  32. Matsui, K., Segawa, Y. & Itami, K. Synthesis and properties of cycloparaphenylene-2,5-pyridylidene: a nitrogen-containing carbon nanoring. Org. Lett. 14, 1888–1891 (2012).

    Article  CAS  Google Scholar 

  33. Sisto, T. J., Tian, X. & Jasti, R. Synthesis of tetraphenyl-substituted [12]cycloparaphenylene: toward a rationally designed ultrashort carbon nanotube. J. Org. Chem. 77, 5857–5860 (2012).

    Article  CAS  Google Scholar 

  34. Wong, B. M. Optoelectronic properties of carbon nanorings: excitonic effects from time-dependent density functional theory. J. Phys. Chem. C 113, 21921–21927 (2009).

    Article  CAS  Google Scholar 

  35. Frisch, M. J. et al. Gaussian 09, Revision D.01 (Gaussian Inc., 2009).

    Google Scholar 

  36. Nakamura, E., Tahara, K., Matsuo, Y. & Sawamura, M. Synthesis, structure, and aromaticity of a hoop-shaped cyclic benzenoid [10]cyclophenacene. J. Am. Chem. Soc. 125, 2834–2835 (2003).

    Article  CAS  Google Scholar 

  37. Anslyn, E. & Dougherty, D. Modern Physical Organic Chemistry 183–185 (University Science Books, 2008).

    Google Scholar 

  38. Punna, S., Díaz, D. D. & Finn, M. G. Palladium-catalyzed homocoupling of arylboronic acids and esters using fluoride in aqueous solvents. Synlett 2004, 2351–2354 (2004).

    Google Scholar 

  39. Moreno-Mañas, M., Pérez, M. & Pleixats, R. Palladium-catalyzed Suzuki-type self-coupling of arylboronic acids. A mechanistic study. J. Org. Chem. 61, 2346–2351 (1996).

    Article  Google Scholar 

  40. Tobe, Y., Jimbo, M., Saiki, S., Kakiuchi, K. & Naemura, K. Unusual reactivity of [6]paracyclophane toward alkyllithiums. J. Org. Chem. 58, 5883–5885 (1993).

    Article  CAS  Google Scholar 

  41. Tobe, Y. et al. Synthesis and molecular structure of (Z)-[6]paracycloph-3-enes. J. Am. Chem. Soc. 109, 1136–1144 (1987).

    Article  CAS  Google Scholar 

  42. Jagadeesh, M. N., Makur, A. & Chandrasekhar, J. The interplay of angle strain and aromaticity: molecular and electronic structures of [0n]paracyclophanes. J. Mol. Model. 6, 226–233 (2000).

    Article  CAS  Google Scholar 

  43. Allinger, N. L., Walter, T. J. & Newton, M. G. Synthesis, structure, and properties of the [7]paracyclophane ring system. J. Am. Chem. Soc. 96, 4588–4597 (1974).

    Article  CAS  Google Scholar 

  44. Tobe, Y. et al. Synthesis, structure and reactivities of [6]paracyclophanes. Tetrahedron 42, 1851–1858 (1986).

    Article  CAS  Google Scholar 

  45. Baran, P. S. & Burns, N. Z. Total synthesis of (±)-haouamine A. J. Am. Chem. Soc. 128, 3908–3909 (2006).

    Article  CAS  Google Scholar 

  46. Takiguchi, H., Ohmori, K. & Suzuki, K. Synthesis and determination of the absolute configuration of cavicularin by a symmetrization/asymmetrization approach. Angew. Chem. Int. Ed. 52, 10472–10476 (2013).

    Article  CAS  Google Scholar 

  47. Nikolaev, A. V., Dennis, T. J. S., Prassides, K. & Soper, A. K. Molecular structure of the C70 fullerene. Chem. Phys. Lett. 223, 143–148 (1994).

    Article  CAS  Google Scholar 

  48. Scott, L. T. et al. A short, rigid, structurally pure carbon nanotube by stepwise chemical synthesis. J. Am. Chem. Soc. 134, 107–110 (2011).

    Article  Google Scholar 

  49. Fujitsuka, M., Cho, D. W., Iwamoto, T., Yamago, S. & Majima, T. Size-dependent fluorescence properties of [n]cycloparaphenylenes (n=8–13), hoop-shaped π-conjugated molecules. Phys. Chem. Chem. Phys. 14, 14585–14588 (2012).

    Article  CAS  Google Scholar 

  50. Kawasumi, K., Zhang, Q., Segawa, Y., Scott, L. T. & Itami, K. A grossly warped nanographene and the consequences of multiple odd-membered-ring defects. Nature Chem. 5, 739–744 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a National Science Foundation CAREER award (CHE-1255219), an Alfred P. Sloan Research Fellowship and a Boston University Ignition Award. The authors gratefully acknowledge J. Bacon (Boston University) for crystal-structure determination.

Author information

Authors and Affiliations

Authors

Contributions

E.R.D. and P.J.E. conceived the project, designed and carried out the experiments, performed the calculations, analysed the data and wrote the manuscript with equal contribution. As such, E.R.D. and P.J.E. are credited as co-first authors. R.J. played a critical role in discussion of the experimental design, project direction, experiments and results, and preparation of the manuscript.

Corresponding author

Correspondence to Ramesh Jasti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1955 kb)

Supplementary information

Crystallographic data for compound 3 (CIF 1175 kb)

Supplementary information

Crystallographic data for compound [5]CPP (CIF 132 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, P., Darzi, E. & Jasti, R. Efficient room-temperature synthesis of a highly strained carbon nanohoop fragment of buckminsterfullerene. Nature Chem 6, 404–408 (2014). https://doi.org/10.1038/nchem.1888

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1888

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing