Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Copolymerization of carbon dioxide and butadiene via a lactone intermediate

Abstract

Although carbon dioxide has attracted broad interest as a renewable carbon feedstock, its use as a monomer in copolymerization with olefins has long been an elusive endeavour. A major obstacle for this process is that the propagation step involving carbon dioxide is endothermic; typically, attempted reactions between carbon dioxide and an olefin preferentially yield olefin homopolymerization. Here we report a strategy to circumvent the thermodynamic and kinetic barriers for copolymerizations of carbon dioxide and olefins by using a metastable lactone intermediate, 3-ethylidene-6-vinyltetrahydro-2H-pyran-2-one, which is formed by the palladium-catalysed condensation of carbon dioxide and 1,3-butadiene. Subsequent free-radical polymerization of the lactone intermediate afforded polymers of high molecular weight with a carbon dioxide content of 33 mol% (29 wt%). Furthermore, the protocol was applied successfully to a one-pot copolymerization of carbon dioxide and 1,3-butadiene, and one-pot terpolymerizations of carbon dioxide, butadiene and another 1,3-diene. This copolymerization technique provides access to a new class of polymeric materials made from carbon dioxide.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Tentative energy diagram of carbon dioxide/ethylene copolymerization and carbon dioxide/butadiene copolymerization.
Figure 2: The concept of this study: copolymerization of carbon dioxide and 1,3-butadiene via a lactone intermediate, 3-ethylidene-6-vinyltetrahydro-2H-pyran-2-one (1).
Figure 3: 13C NMR spectra and the assignments for poly-1.
Figure 4: Proposed reaction pathways to form repeating units of α, β and γ.

References

  1. 1

    Aresta, M. Carbon Dioxide as Chemical Feedstock (Wiley-VCH, 2010).

    Google Scholar 

  2. 2

    Sakakura, T., Choi, J. C. & Yasuda, H. Transformation of carbon dioxide. Chem. Rev. 107, 2365–2387 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Arakawa, H. et al. Catalysis research of relevance to carbon management: progress, challenges, and opportunities. Chem. Rev. 101, 953–996 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Behr, A. Use of carbon dioxide in industrial organic syntheses. Chem. Eng. Technol. 10, 16–27 (1987).

    Google Scholar 

  5. 5

    Omae, I. Recent developments in carbon dioxide utilization for the production of organic chemicals. Coord. Chem. Rev. 256, 1384–1405 (2012).

    CAS  Google Scholar 

  6. 6

    Sumida, K. et al. Carbon dioxide capture in metal–organic frameworks. Chem. Rev. 112, 724–781 (2012).

    CAS  PubMed  Google Scholar 

  7. 7

    Huang, K., Sun, C-L. & Shi, Z-J. Transition-metal-catalyzed C–C bond formation through the fixation of carbon dioxide. Chem. Soc. Rev. 40, 2435–2452 (2011).

    CAS  PubMed  Google Scholar 

  8. 8

    Tsuji, Y. & Fujihara, T. Carbon dioxide as a carbon source in organic transformation: carbon–carbon bond forming reactions by transition-metal catalysts. Chem. Commun. 48, 9956–9964 (2012).

    CAS  Google Scholar 

  9. 9

    Aresta, M., Dibenedetto, A. & Angelini, A. The use of solar energy can enhance the conversion of carbon dioxide into energy-rich products: stepping towards artificial photosynthesis. Phil. Trans. R. Soc. A 371, 2012 0111 (2012).

  10. 10

    Shaikh, A-A. G. & Sivaram, S. Organic carbonates. Chem. Rev. 96, 951–976 (1996).

    CAS  PubMed  Google Scholar 

  11. 11

    Darensbourg, D. J. & Holtcamp, M. W. Catalysts for the reactions of epoxides and carbon dioxide. Coord. Chem. Rev. 153, 155–174 (1996).

    CAS  Google Scholar 

  12. 12

    Lu, X-B. & Darensbourg, D. J. Cobalt catalysts for the coupling of CO2 and epoxides to provide polycarbonates and cyclic carbonates. Chem. Soc. Rev. 41, 1462–1484 (2012).

    CAS  PubMed  Google Scholar 

  13. 13

    Fukuoka, S. et al. A novel non-phosgene polycarbonate production process using by-product CO2 as starting material. Green Chem. 5, 497–507 (2003).

    CAS  Google Scholar 

  14. 14

    Coates, G. W. & Moore, D. R. Discrete metal-based catalysts for the copolymerization of CO2 and epoxides: discovery, reactivity, optimization, and mechanism. Angew. Chem. Int. Ed. 43, 6618–6639 (2004).

    CAS  Google Scholar 

  15. 15

    Darensbroug, D. J. Making plastics from carbon dioxide: salen metal complexes as catalysts for the production of polycarbonates from epoxides and CO2 . Chem. Rev. 107, 2388–2410 (2007).

    Google Scholar 

  16. 16

    Sugimoto, H. & Inoue, S. Copolymerization of carbon dioxide and epoxide. J. Polym. Sci. A 42, 5561–5573 (2004).

    CAS  Google Scholar 

  17. 17

    Kember, M. R., Buchard, A. & Williams, C. K. Catalysts for CO2/epoxide copolymerisation. Chem. Commun. 47, 141–163 (2011).

    CAS  Google Scholar 

  18. 18

    Lejkowski, M. L. et al. The first catalytic synthesis of an acrylate from CO2 and an alkene—a rational approach. Chem. Eur. J. 18, 14017–14025 (2012).

    CAS  PubMed  Google Scholar 

  19. 19

    Takaya, J., Sasano, K. & Iwasawa, N. Efficient one-to-one coupling of easily available 1,3-dienes with carbon dioxide. Org. Lett. 13, 1698–1701 (2011).

    CAS  PubMed  Google Scholar 

  20. 20

    Williams, C. M., Johnson, J. B. & Rovis, T. Nickel-catalyzed reductive carboxylation of styrenes using CO2 . J. Am. Chem. Soc. 130, 14936–14937 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Takimoto, M., Nakamura, Y., Kimura, K. & Mori, M. Highly enantioselective catalytic carbon dioxide incorporation reaction: nickel-catalyzed asymmetric carboxylative cyclization of bis-1,3-dienes. J. Am. Chem. Soc. 126, 5956–5957 (2004).

    CAS  PubMed  Google Scholar 

  22. 22

    Soga, K., Hosoda, S. & Ikeda, S. Copolymerization of carbon dioxide and some diene compounds. Die Makromol. Chemie 176, 1907–1911 (1975).

    CAS  Google Scholar 

  23. 23

    Soga, K., Hosoda, S., Tasuka, Y. & Ikeda, S. Copolymerization of carbon dioxide and ethyl vinyl ether. J. Polym. Sci. Polym. Lett. 13, 265–268 (1975).

    CAS  Google Scholar 

  24. 24

    Soga, K., Sato, M., Hosoda, S. & Ikeda, S. Copolymerization of methyl vinyl ether and carbon dioxide. J. Polym. Sci. Polym. Lett. 13, 543–548 (1975).

    CAS  Google Scholar 

  25. 25

    Chiang, W-Y. Copolymerization of carbon dioxide and acrylonitrile. Proc. Natl Sci. Council Republic of China 2, 170–176 (1978).

    CAS  Google Scholar 

  26. 26

    Price, C. J., Reich, B. J. E. & Miller, S. A. Thermodynamic and kinetic considerations in the copolymerization of ethylene and carbon dioxide. Macromolecules 39, 2751–2756 (2006).

    CAS  Google Scholar 

  27. 27

    Darensbourg, D. J. & Yeung, A. D. Thermodynamics of the carbon dioxide–epoxide copolymerization and kinetics of the metal-free degradation: a computational study. Macromolecules 46, 83–95 (2013).

    CAS  Google Scholar 

  28. 28

    Sasaki, Y., Inoue, Y. & Hashimoto, H. Reaction of carbon dioxide with butadiene catalysed by palladium complexes. Synthesis of 2-ethylidenehept-5-en-4-olide. J. Chem. Soc. Chem. Commun. 605–606 (1976).

  29. 29

    Behr, A. & Henze, G. Use of carbon dioxide in chemical syntheses via a lactone intermediate. Green Chem. 13, 25–39 (2011).

    CAS  Google Scholar 

  30. 30

    Musco, A. Co-oligomerization of butadiene and carbon dioxide catalysed by tertiary phosphine–palladium complexes. J. Chem. Soc. Perkin Trans. 1 693–698 (1980).

  31. 31

    Behr, A. & Juszak, K-D. Palladium-catalyzed reaction of butadiene and carbon dioxide. J. Organomet. Chem. 255, 263–268 (1983).

    CAS  Google Scholar 

  32. 32

    Behr, A., He, R., Juszak, K-D., Krüger, C. & Tsay, Y-H. Steuerungsmöglichkeiten bei der übergangsmetall-katalysierten umsetzung von 1,3-dienen mit kohlendioxid. Chem. Ber. 119, 991–1015 (1986).

    CAS  Google Scholar 

  33. 33

    Braunstein, P., Matt, D. & Nobel, D. Carbon dioxide activation and catalytic lactone synthesis by telomerization of butadiene and carbon dioxide. J. Am. Chem. Soc. 110, 3207–3212 (1988).

    CAS  Google Scholar 

  34. 34

    Dinjus, E. & Leitner, W. New insights into the palladium-catalysed synthesis of δ-lactones from 1,3-dienes and carbon dioxide. Appl. Organomet. Chem. 9, 43–50 (1995).

    CAS  Google Scholar 

  35. 35

    Pitter, S. & Dinjus, E. Phosphinoalkyl nitriles as hemilabile ligands: new aspects in the homogeneous catalytic coupling of CO2 and 1,3-butadiene. J. Mol. Catal. A 125, 39–45 (1997).

    CAS  Google Scholar 

  36. 36

    Behr, A. & Heite, M. Telomerisation von kohlendioxid und 1,3-butadien: verfahrensentwicklung via miniplant-technik. Chem. Ing. Tech. 72, 58–61 (2000).

    CAS  Google Scholar 

  37. 37

    Behr, A. & Becker, M. The telomerisation of 1,3-butadiene and carbon dioxide: process development and optimisation in a continuous miniplant. Dalton Trans. 4607–4613 (2006).

  38. 38

    Behr, A., Bahke, P. & Becker, M. Palladium-katalysierte telomerisation von kohlendioxid mit butadien im labor- und miniplantmaßstab. Chem. Ing. Tech. 76, 1828–1832 (2004).

    CAS  Google Scholar 

  39. 39

    Behr, A., Bahke, P., Klinger, B. & Becker, M. Application of carbonate solvents in the telomerisation of butadiene with carbon dioxide. J. Mol. Catal. A 267, 149–156 (2007).

    CAS  Google Scholar 

  40. 40

    Haack, V., Dinjus, E. & Pitter, S. Synthesis of polymers with an intact lactone ring structure in the main chain. Die Angew. Makromol. Chem. 257, 19–22 (1998).

    CAS  Google Scholar 

  41. 41

    Laible, R. C. Allyl polymerizations. Chem. Rev. 58, 807–843 (1958).

    CAS  Google Scholar 

  42. 42

    Miller, M. L. & Skogman, J. Polymerization of tert-butyl crotonate. J. Polym. Sci. A 2, 4551–4558 (1964).

    CAS  Google Scholar 

  43. 43

    Kassi, E. & Patrickios, C. S. Well-defined polymers from biosourced monomers: the case of 2-(methacryloyloxy)ethyl tiglate. Macromolecules 43, 1411–1415 (2010).

    CAS  Google Scholar 

  44. 44

    Kitayama, T. et al. Synthesis and polymerization of methyl 3-methylcyclobutene-1-carboxylate. Macromolecules 35, 1591–1598 (2002).

    CAS  Google Scholar 

  45. 45

    Chen, X-P., Sufi, B. A., Padias, A. B. & Hall, H. K. Jr. Controlled/‘living’ reverse atom transfer radical polymerization of a monocyclic olefin, methyl 1-cyclobutenecarboxylate. Macromolecules 35, 4277–4281 (2002).

    CAS  Google Scholar 

  46. 46

    Brandrup, J., Immergut, E. H. & Grulke, E. A. Polymer Handbook 4th edn (Wiley, 1999).

    Google Scholar 

  47. 47

    Iio, K., Kobayashi, K. & Matsuo, M. Radical polymerization of allyl alcohol and allyl acetate. Polym. Adv. Technol. 18, 953–958 (2007).

    CAS  Google Scholar 

  48. 48

    Matyjaszewski, K., Nakagawa, Y. & Jasieczek, C. B. Polymerization of n-butyl acrylate by atom transfer radical polymerization: remarkable effect of ethylene carbonate and other solvents. Macromolecules 31, 1535–1541 (1998).

    CAS  Google Scholar 

  49. 49

    Sato, T., Shimooka, S., Seno, M. & Tanaka, H. Radical polymerization of ortho-formylphenyl crotonate involving intramolecular hydrogen-abstraction. Eur. Polym. J. 28, 1357–1364 (1992).

    CAS  Google Scholar 

  50. 50

    Grub, J. & Löser, E. Butadiene. Ullmann's Encyclopedia of Industrial Chemistry (Wiley-VCH, 2011).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Funding Program for Next Generation World-Leading Researchers, Green Innovation and the Global COE Program ‘Chemistry Innovation through Cooperation of Science and Engineering’ from the Ministry of Education, Culture, Sports, Science and Technology (MEXT)/Japan Society for the Promotion of Science, Japan, and a Grant-in-Aid for Innovative Areas ‘Molecular Activation Directed toward Straightforward Synthesis’ from MEXT, Japan. The theoretical calculations were performed using computational resources provided by the Research Center for Computational Science, National Institutes of Natural Sciences, Okazaki, Japan. We are grateful to H. Sugimoto, H. Goto and S. Honda (Tokyo University of Science) for right-angle laser-light scattering (RALLS) analyses for the molecular weights of polymers, and to B. P. Carrow (Princeton University) for careful proofreading.

Author information

Affiliations

Authors

Contributions

All authors designed the studies, discussed the results and wrote the paper. R.N. performed all the experimental and computational work.

Corresponding author

Correspondence to Kyoko Nozaki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 5271 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nakano, R., Ito, S. & Nozaki, K. Copolymerization of carbon dioxide and butadiene via a lactone intermediate. Nature Chem 6, 325–331 (2014). https://doi.org/10.1038/nchem.1882

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing