Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol


The use of methanol as a fuel and chemical feedstock could become very important in the development of a more sustainable society if methanol could be efficiently obtained from the direct reduction of CO2 using solar-generated hydrogen. If hydrogen production is to be decentralized, small-scale CO2 reduction devices are required that operate at low pressures. Here, we report the discovery of a Ni-Ga catalyst that reduces CO2 to methanol at ambient pressure. The catalyst was identified through a descriptor-based analysis of the process and the use of computational methods to identify Ni-Ga intermetallic compounds as stable candidates with good activity. We synthesized and tested a series of catalysts and found that Ni5Ga3 is particularly active and selective. Comparison with conventional Cu/ZnO/Al2O3 catalysts revealed the same or better methanol synthesis activity, as well as considerably lower production of CO. We suggest that this is a first step towards the development of small-scale low-pressure devices for CO2 reduction to methanol.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Theoretical activity volcano for CO2 hydrogenation to methanol.
Figure 2: Characterization of the catalysts studied.
Figure 3: The measured activity and selectivity towards methanol synthesis as a function of temperature for the studied catalysts.
Figure 4: Deactivation of Ni5Ga3 with time on stream.


  1. 1

    Schlögl, R. Chemistry's role in regenerative energy. Angew. Chem. Int. Ed. 50, 6424–6426 (2011).

    Article  Google Scholar 

  2. 2

    Olah, G. A. Towards oil independence through renewable methanol chemistry. Angew. Chem. Int. Ed. 52, 104–107 (2013).

    CAS  Article  Google Scholar 

  3. 3

    Benson, E. E., Kubiak, C. P., Sathrum, A. J. & Smieja, J. M. Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem. Soc. Rev. 38, 89–99 (2009).

    CAS  Article  Google Scholar 

  4. 4

    Arakawa, H. et al. Catalysis research of relevance to carbon management: progress, challenges, and opportunities. Chem. Rev. 101, 953–996 (2001).

    CAS  Article  Google Scholar 

  5. 5

    Hori, Y., Kikuchi, K. & Suzuki, S. Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrocarbonate solution. Chem. Lett. 14, 1695–1698 (1985).

    Article  Google Scholar 

  6. 6

    Kuhl, K. P., Cave, E. R., Abram, D. N. & Jaramillo, T. F. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5, 7050–7059 (2012).

    CAS  Article  Google Scholar 

  7. 7

    Rosen, B. A. et al. Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials. Science 334, 643–644 (2011).

    CAS  Article  Google Scholar 

  8. 8

    Cole, E. B. et al. Using a one-electron shuttle for the multielectron reduction of CO2 to methanol: kinetic, mechanistic, and structural insights. J. Am. Chem. Soc. 132, 11539–11551 (2010).

    Article  Google Scholar 

  9. 9

    Schouten, K. J. P., Kwon, Y., van der Ham, C. J. M., Qin, Z. & Koper, M. T. M. A new mechanism for the selectivity to C(1) and C(2) species in the electrochemical reduction of carbon dioxide on copper electrodes. Chem. Sci. 2, 1902–1909 (2011).

    CAS  Article  Google Scholar 

  10. 10

    Chen, Y., Li, C. W. & Kanan, M. W. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J. Am. Chem. Soc. 134, 19969–19972 (2012).

    CAS  Article  Google Scholar 

  11. 11

    Peterson, A. A. & Nørskov, J. K. Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J. Phys. Chem. Lett. 3, 251–258 (2012).

    CAS  Article  Google Scholar 

  12. 12

    Lewis, N. S. & Nocera, D. G. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006).

    CAS  Article  Google Scholar 

  13. 13

    Crabtree, G. & Sarrao, J. The road to sustainability. Physics World 22, 24–30 (2009).

    Article  Google Scholar 

  14. 14

    Hansen, J. B. & Nielsen, P. E. H. in Handbook of Heterogeneous Catalysis (eds Ertl, G., Knözinger, H. & Schüth, F.) 2920 (Wiley, 2008).

    Google Scholar 

  15. 15

    Kasatkin, I., Kurr, P., Kniep, B., Trunschke, A. & Schlögl, R. Role of lattice strain and defects in copper particles on the activity of Cu/ZnO/Al2O3 catalysts for methanol synthesis. Angew. Chem. Int. Ed. 46, 7324–7327 (2007).

    CAS  Article  Google Scholar 

  16. 16

    Behrens, M. Meso- and nano-structuring of industrial Cu/ZnO/(Al2O3) catalysts. J. Catal. 267, 24–29 (2009).

    CAS  Article  Google Scholar 

  17. 17

    Kurtz, M., Wilmer, H., Genger, T., Hinrichsen, O. & Muhler, M. Deactivation of supported copper catalysts for methanol synthesis. Catal. Lett. 86, 77–80 (2003).

    CAS  Article  Google Scholar 

  18. 18

    Campbell, C. T., Daube, K. A. & White, J. M. Cu/ZnO(0001) and ZnOx/Cu(111): model catalysts for methanol synthesis. Surf. Sci. 182, 458–476 (1987).

    CAS  Article  Google Scholar 

  19. 19

    Bowker, M., Hadden, R. A., Houghton, H., Hyland, J. N. K. & Waugh, K. C. The mechanism of methanol synthesis on copper/zinc oxide/alumina catalysts. J. Catal. 109, 263–273 (1988).

    CAS  Article  Google Scholar 

  20. 20

    Askgaard, T. S., Nørskov, J. K., Ovesen, C. V. & Stoltze, P. A kintic model of methanol synthesis. J. Catal. 156, 229–242 (1995).

    CAS  Article  Google Scholar 

  21. 21

    Fisher, I. A. & Bell, A. T. In-situ infrared study of methanol synthesis from H2/CO2 over Cu/SiO2 and Cu/ZrO2/SiO2 . J. Catal. 172, 222–237 (1997).

    CAS  Article  Google Scholar 

  22. 22

    Meitzner, G. & Iglesia, E. New insights into methanol synthesis catalysts from X-ray absorption spectroscopy. Catal. Today 53, 433–441 (1999).

    CAS  Article  Google Scholar 

  23. 23

    Fujitani, T. & Nakamura, J. The chemical modification seen in the Cu/ZnO methanol synthesis catalysts. Appl. Catal. A 191, 111–129 (2000).

    CAS  Article  Google Scholar 

  24. 24

    Grunwaldt, J-D., Molenbroek, A. M., Topsøe, N-Y., Topsøe, H. & Clausen, B. S. In situ investigations of structural changes in Cu/ZnO catalysts. J. Catal. 194, 452–460 (2000).

    CAS  Article  Google Scholar 

  25. 25

    Hansen, P. L. et al. Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 295, 2053–2055 (2002).

    CAS  Article  Google Scholar 

  26. 26

    Kurtz, M. et al. New synthetic routes to more active Cu/ZnO catalysts used for methanol synthesis. Catal. Lett. 92, 49–52 (2004).

    CAS  Article  Google Scholar 

  27. 27

    Waugh, K. C. Methanol synthesis. Catal. Lett. 142, 1153–1166 (2012).

    CAS  Article  Google Scholar 

  28. 28

    Yang, Y., Mims, C. A., Mei, D. H., Peden, C. H. F. & Campbell, C. T. Mechanistic studies of methanol synthesis over Cu from CO/CO2/H2/H2O mixtures: the source of C in methanol and the role of water. J. Catal. 298, 10–17 (2013).

    CAS  Article  Google Scholar 

  29. 29

    Grabow, L. C. & Mavrikakis, M. Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation. ACS Catal. 1, 365–384 (2011).

    CAS  Article  Google Scholar 

  30. 30

    Behrens, M. et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 336, 893–897 (2012).

    CAS  Article  Google Scholar 

  31. 31

    Grabow, L. C. et al. Descriptor-based analysis applied to HCN synthesis from NH3 and CH4 . Angew. Chem. Int. Ed. 50, 4601–4605 (2011).

    CAS  Article  Google Scholar 

  32. 32

    Lausche, A. C., Hummelshøj, J. S., Abild-Pedersen, F., Studt, F. & Nørskov, J. K. Application of a new informatics tool in heterogeneous catalysis: analysis of methanol dehydrogenation on transition metal catalysts for the production of anhydrous formaldehyde. J. Catal. 291, 133–137 (2012).

    CAS  Article  Google Scholar 

  33. 33

    Hammer, B., Hansen, L. B. & Nørskov, J. K. Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals. Phys. Rev. B 59, 7413–7421 (1999).

    Article  Google Scholar 

  34. 34

    Nørskov, J. K. et al. The nature of the active site in heterogeneous metal catalysis. Chem. Soc. Rev. 37, 2163–2171 (2008).

    Article  Google Scholar 

  35. 35

    Studt, F., Abild-Pedersen, F., Varley, J. B. & Nørskov, J. K. CO and CO2 hydrogenation to methanol calculated using the BEEF–vdW functional. Catal. Lett. 143, 71–73 (2013).

    CAS  Article  Google Scholar 

  36. 36

    Wellendorff, J. et al. Density functionals for surface science: exchange-correlation model development with Bayesian error estimation. Phys. Rev. B 85, 235149 (2012).

    Article  Google Scholar 

  37. 37

    Nørskov, J. K., Abild-Pedersen, F., Studt, F. & Bligaard, T. Density functional theory in surface chemistry and catalysis. Proc. Natl Acad. Sci. USA 108, 937–943 (2011).

    Article  Google Scholar 

  38. 38

    Studt, F. et al. Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene. Science 320, 1320–1322 (2008).

    CAS  Article  Google Scholar 

  39. 39

    Okamoto, H. Ga-Ni (gallium-nickel). J. Phase Equilib. Diffus. 31, 575–576 (2010).

    CAS  Article  Google Scholar 

  40. 40

    Baltes, C., Vukojević, S. & Schüth, F. Correlations between synthesis, precursor, and catalyst structure and activity of a large set of CuO/ZnO/Al2O3 catalysts for methanol synthesis. J. Catal. 258, 334–344 (2008).

    CAS  Article  Google Scholar 

  41. 41

    Arico, A. S., Srinivasan, S. & Antonucci, V. DMFCs: from fundamental aspects to technology development. Fuel Cells 1, 133–161 (2001).

    CAS  Article  Google Scholar 

  42. 42

    Kamarudin, S. K., Daud, W. R. W., Ho, S. L. & Hasran, U. A. Overview on the challenges and developments of micro-direct methanol fuel cells (DMFC). J. Power Sources 163, 743–754 (2007).

    CAS  Article  Google Scholar 

  43. 43

    Lackner, K. S. A guide to CO2 sequestration. Science 300, 1677–1678 (2003).

    CAS  Article  Google Scholar 

  44. 44

    Keith, D. W. Why capture CO2 from the atmosphere? Science 325, 1654–1655 (2009).

    CAS  Article  Google Scholar 

  45. 45

    Jones, C. W. CO2 capture from dilute gases as a component of modern global carbon management. Annu. Rev. Chem. Biomol. Eng. 2, 31–52 (2011).

    CAS  Article  Google Scholar 

  46. 46

    House, K. Z. et al. Economic and energetic analysis of capturing CO2 from ambient air. Proc. Natl Acad. Sci. USA 108, 20428–20433 (2011).

    CAS  Article  Google Scholar 

  47. 47

    Studt, F. et al. CO hydrogenation to methanol on Cu-Ni catalysts: theory and experiment. J. Catal. 293, 51–60 (2012).

    CAS  Article  Google Scholar 

  48. 48

    Hummelshøj, J. S., Abild-Pedersen, F., Studt, F., Bligaard, T. & Nørskov, J. K. CatApp: a web application for surface chemistry and heterogeneous catalysis. Angew. Chem. Int. Ed. 51, 272–274 (2012).

    Article  Google Scholar 

  49. 49

    Peterson, A. A., Abild-Pedersen, F., Studt, F., Rossmeisl, J. & Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 3, 1311–1315 (2010).

    CAS  Article  Google Scholar 

Download references


F.S., F.A-P., J.S.H. and J.K.N. acknowledge support from the US Department of Energy. This work was partly supported by The Danish National Research Foundation's Centre for Individual Nanoparticle Functionality (DNRF54) and partly by the Catalysis for Sustainable Energy initiative, which is funded by the Danish Ministry of Science, Technology, and Innovation. The authors also thank J. R. Rostrup-Nielsen for helpful discussions.

Author information




F.S., F.A-P., J.S.H. and J.K.N. contributed to the computational work in this article. I.S., C.F.E., S.D. and I.C. contributed to the experimental work.

Corresponding author

Correspondence to Jens K. Nørskov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2711 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Studt, F., Sharafutdinov, I., Abild-Pedersen, F. et al. Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. Nature Chem 6, 320–324 (2014).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing