Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Side-chain control of porosity closure in single- and multiple-peptide-based porous materials by cooperative folding

Abstract

Porous materials are attractive for separation and catalysis—these applications rely on selective interactions between host materials and guests. In metal–organic frameworks (MOFs), these interactions can be controlled through a flexible structural response to the presence of guests. Here we report a MOF that consists of glycyl–serine dipeptides coordinated to metal centres, and has a structure that evolves from a solvated porous state to a desolvated non-porous state as a result of ordered cooperative, displacive and conformational changes of the peptide. This behaviour is driven by hydrogen bonding that involves the side-chain hydroxyl groups of the serine. A similar cooperative closure (reminiscent of the folding of proteins) is also displayed with multipeptide solid solutions. For these, the combination of different sequences of amino acids controls the framework's response to the presence of guests in a nonlinear way. This functional control can be compared to the effect of single-point mutations in proteins, in which exchange of single amino acids can radically alter structure and function.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Structure of solvated/open ZnGS2.
Figure 2: Porosity and powder diffraction data of Zn(GS)2 and multiple-peptide MOFs.
Figure 3: Ordered nature of the local environment in solvated/open and guest-free/closed Zn[(GS)0.75(GT)0.25]2.
Figure 4: Structure of desolvated Zn[(GS)0.75(GT)0.25]2 and metrics of the structural transformation.
Figure 5: Computational modelling of the cooperative peptide-folding closure mechanism.

References

  1. Zhou, H-C., Long, J. R. & Yaghi, O. M. Introduction to metal–organic frameworks. Chem. Rev. 112, 673–674 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Li, J. R., Kuppler, R. J. & Zhou, H. C. Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 38, 1477–1504 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Yang, W. et al. Selective CO2 uptake and inverse CO2/C2H2 selectivity in a dynamic bifunctional metal–organic framework. Chem. Sci. 3, 2993–2999 (2012).

    Article  CAS  Google Scholar 

  4. Dhakshinamoorthy, A. & García, H. Catalysis by metal nanoparticles embedded on metal–organic frameworks. Chem. Soc. Rev. 41, 5262–5284 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Lee, J-Y. et al. Metal–organic framework materials as catalysts. Chem. Soc. Rev. 38, 1450–1459 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Rocca, D. J., Liu, D. & Lin, W. Nanoscale metal–organic frameworks for biomedical imaging and drug delivery. Acc. Chem. Res. 44, 957–968 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Bauer, C. A. et al. Influence of connectivity and porosity on ligand-based luminescence in zinc metal–organic frameworks. J. Am. Chem. Soc. 129, 7136–7144 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Ferrando-Soria, J. et al. Highly selective chemical sensing in a luminescent nanoporous magnet. Adv. Mater. 24, 5625–5629 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Deng, H. et al. Large-pore apertures in a series of metal–organic frameworks. Science 336, 1018–1023 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Guillerm, V. et al. A series of isoreticular, highly stable, porous zirconium oxide based metal–organic frameworks. Angew. Chem. Int. Ed. 51, 9267–9271 (2012).

    Article  CAS  Google Scholar 

  11. Hasegawa, S. et al. Three-dimensional porous coordination polymer functionalized with amide groups based on tridentate ligand: selective sorption and catalysis. J. Am. Chem. Soc. 129, 2607–2614 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Barrio, J. et al. Control of porosity geometry in amino acid derived nanoporous materials. Chem. Eur. J. 14, 4521–4532 (2008).

    Article  CAS  Google Scholar 

  13. An, J., Geib, S. J. & Rosi, N. L. High and selective CO2 uptake in a cobalt adeninate metal–organic framework exhibiting pyrimidine- and amino-decorated pores. J. Am. Chem. Soc. 132, 38–39 (2009).

    Article  CAS  Google Scholar 

  14. Imaz, I. et al. Metal–biomolecule frameworks (MBioFs). Chem. Commun. 47, 7287–7302 (2011).

    Article  CAS  Google Scholar 

  15. Boehr, D. D., Nussinov, R. & Wright, P. E. The role of dynamic conformational ensembles in biomolecular recognition. Nature Chem. Biol. 5, 789–796 (2009).

    Article  CAS  Google Scholar 

  16. Rabone, J. et al. An adaptable peptide-based porous material. Science 329, 1053–1057 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Martí-Gastaldo, C., Warren, J. E., Stylianou, K., Flack, N. L. O. & Rosseinsky, M. J. Enhanced stability in rigid peptide-based porous materials. Angew. Chem. Int. Ed. 51, 11044–11048 (2012).

    Article  CAS  Google Scholar 

  18. Connolly, M. L. Solvent-accessible surfaces of proteins and nucleic acids. Science 221, 709–713 (1983).

    Article  CAS  PubMed  Google Scholar 

  19. Deng, H. et al. Multiple functional groups of varying ratios in metal–organic frameworks. Science 327, 846–850 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Fukushima, T. et al. Solid solutions of soft porous coordination polymers: fine-tuning of gas adsorption properties. Angew. Chem. Int. Ed. 49, 4820–4824 (2010).

    Article  CAS  Google Scholar 

  21. Burrows, A. D. Mixed-component metal–organic frameworks (MC-MOFs): enhancing functionality through solid solution formation and surface modifications. CrystEngComm 13, 3623–3642 (2011).

    Article  CAS  Google Scholar 

  22. Henke, S., Schneemann, A., Wütscher, A. & Fischer, R. A. Directing the breathing behavior of pillared-layered metal–organic frameworks via a systematic library of functionalized linkers bearing flexible substituents. J. Am. Chem. Soc. 134, 9464–9474 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Lescouet, T. et al. Homogeneity of flexible metal–organic frameworks containing mixed linkers. J. Mater. Chem. 22, 10287–10293 (2012).

    Article  CAS  Google Scholar 

  24. Serra-Crespo, P. et al. Interplay of metal node and amine functionality in NH2-MIL-53: modulating breathing behavior through intra-framework interactions. Langmuir 28, 12916–12922 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Maes, M. et al. Separation of styrene and ethylbenzene on metal–organic frameworks: analogous structures with different adsorption mechanisms. J. Am. Chem. Soc. 132, 15277–15285 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Biradha, K., Hongo, Y. & Fujita, M. Crystal-to-crystal sliding of 2D coordination layers triggered by guest exchange. Angew. Chem. Int. Ed. 41, 3395–3398 (2002).

    Article  CAS  Google Scholar 

  27. Kitaura, R., Seki, K., Akiyama, G. & Kitagawa, S. Porous coordination-polymer crystals with gated channels specific for supercritical gases. Angew. Chem. Int. Ed. 42, 428–431 (2003).

    Article  CAS  Google Scholar 

  28. Li, D. & Kaneko, K. Hydrogen bond-regulated microporous nature of copper complex-assembled microcrystals. Chem. Phys. Lett. 335, 50–56 (2001).

    Article  CAS  Google Scholar 

  29. Maspoch, D. et al. A nanoporous molecular magnet with reversible solvent-induced mechanical and magnetic properties. Nature Mater. 2, 190–195 (2003).

    Article  CAS  Google Scholar 

  30. Lu, J. Y. & Babb, A. M. An extremely stable open-framework metal–organic polymer with expandable structure and selective adsorption capability. Chem. Commun. 1340–1341 (2002).

  31. Choi, H. J., Dincă, M. & Long, J. R. Broadly hysteretic H2 adsorption in the microporous metal–organic framework Co(1,4-benzenedipyrazolate). J. Am. Chem. Soc. 130, 7848–7850 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Salles, F. et al. Multistep N2 breathing in the metal–organic framework Co(1,4-benzenedipyrazolate). J. Am. Chem. Soc. 132, 13782–13788 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Horcajada, P. et al. How linker's modification controls swelling properties of highly flexible iron(III) dicarboxylates MIL-88. J. Am. Chem. Soc. 133, 17839–17847 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Aguado, S. et al. Guest-induced gate-opening of a zeolite imidazolate framework. New J. Chem. 35, 546–550 (2011).

    Article  CAS  Google Scholar 

  35. Hu, J-S. et al. Syntheses, structures, and photoluminescence of five new metal–organic frameworks based on flexible tetrapyridines and aromatic polycarboxylate acids. Cryst. Growth Des. 10, 2676–2684 (2010).

    Article  CAS  Google Scholar 

  36. Colombo, V. et al. Tuning the adsorption properties of isoreticular pyrazolate-based metal–organic frameworks through ligand modification. J. Am. Chem. Soc. 134, 12830–12843 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Henke, S., Schmid, R., Grunwaldt, J-D. & Fischer, R. A. Flexibility and sorption selectivity in rigid metal–organic frameworks: the impact of ether-functionalised linkers. Chem. Eur. J. 16, 14296–14306 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Kepert, C. J., Prior, T. J. & Rosseinsky, M. J. A versatile family of interconvertible microporous chiral molecular frameworks: the first example of ligand control of network chirality. J. Am. Chem. Soc. 122, 5158–5168 (2000).

    Article  CAS  Google Scholar 

  39. Czepirski, L. & Jagiello, J. Virial-type thermal equation of gas solid adsorption. Chem. Eng. Sci. 44, 797–801 (1989).

    Article  CAS  Google Scholar 

  40. Klafter, J. & Shlesinger, M. F. On the relationship among three theories of relaxation in disordered systems. Proc. Natl Acad. Sci. USA 83, 848–851 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mittermaier, A. New tools provide new insights in NMR studies of protein dynamics. Science 312, 224–228 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Teague, S. J. Implications of protein flexibility for drug discovery. Nature Rev. Drug Discov. 2, 527–541 (2003).

    Article  CAS  Google Scholar 

  43. French-Constant, R. H., Rocheleau, T. A., Steichen, J. C. & Chalmers, A. E. A point mutation in a Drosophila GABA receptor confers insecticide resistance. Nature 363, 449–451 (1993).

    Article  Google Scholar 

  44. Altschmied, L., Baumeister, R., Pfleiderer, K. & Hillen, W. A threonine to alanine exchange at position 40 of Tet repressor alters the recognition of the sixth base pair of tet operator from GC to AT. EMBO J. 7, 4011–4017 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research was supported by the Engineering and Physical Sciences Research Council (EPSRC) under EP/H000925 and EP/J008834. C.M.G. thanks the European Union for a Marie Curie Fellowship (IEF-253369). Via our membership of the UK's high-performance computing Materials Chemistry Consortium, funded by EPSRC (EP/F067496), this work made use of the facilities of HECToR, the UK's national high-performance computing service. We also thank the support of the Diamond Light Source and Anna Warren.

Author information

Authors and Affiliations

Authors

Contributions

C.M.G and M.J.R conceived the research, designed the experiments and co-wrote the paper. C.M.G synthesized the materials and carried out the adsorption experiments and their analysis. D.A. designed and performed the theoretical simulations under the guidance of G.R.D., and N.G.B., J.E.W., P.A.C. and G.M. performed the structural analyses. Y.Z.K. and P.V.W. carried out and analysed the solid-state CP/MAS NMR experiments. M.E.B. performed NMR spectroscopy on multiple-peptide MOFs. All the authors discussed the results and contributed to writing the manuscript.

Corresponding author

Correspondence to M. J. Rosseinsky.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 9788 kb)

Supplementary information

Crystallographic data for ZnGS2 (sntB00014C1). (CIF 283 kb)

Supplementary information

Crystallographic data for Zn[(GA)0.5(GS)0.5]2 (B00113). (CIF 391 kb)

Supplementary information

Crystallographic data for Zn[(GA)0.5(GT)0.5]2 (B00122). (CIF 404 kb)

Supplementary information

Crystallographic data for compound Zn[(GS)0.5(GT)0.5]2 (B00117). (CIF 204 kb)

Supplementary information

Crystallographic data for compound Zn[(GS)0.75(GT)0.25]2 (MJR0981). (CIF 17 kb)

Supplementary information

Crystallographic data for compound desolvated Zn[(GS)0.75(GT)0.25]2 (MJR0981post). (CIF 16 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Martí-Gastaldo, C., Antypov, D., Warren, J. et al. Side-chain control of porosity closure in single- and multiple-peptide-based porous materials by cooperative folding. Nature Chem 6, 343–351 (2014). https://doi.org/10.1038/nchem.1871

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1871

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing