Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Conversion of light into macroscopic helical motion

Abstract

A key goal of nanotechnology is the development of artificial machines capable of converting molecular movement into macroscopic work. Although conversion of light into shape changes has been reported and compared to artificial muscles, real applications require work against an external load. Here, we describe the design, synthesis and operation of spring-like materials capable of converting light energy into mechanical work at the macroscopic scale. These versatile materials consist of molecular switches embedded in liquid-crystalline polymer springs. In these springs, molecular movement is converted and amplified into controlled and reversible twisting motions. The springs display complex motion, which includes winding, unwinding and helix inversion, as dictated by their initial shape. Importantly, they can produce work by moving a macroscopic object and mimicking mechanical movements, such as those used by plant tendrils to help the plant access sunlight. These functional materials have potential applications in micromechanical systems, soft robotics and artificial muscles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A photoresponsive liquid crystal in a twist-nematic molecular organization.
Figure 2: The ribbons display a variety of shapes that depend on the direction in which they are cut.
Figure 3: Shape and photoactuation modes of the polymer springs as a function of the angular offset.
Figure 4: Photoactuation modes of the polymer springs doped with S-811.
Figure 5: Mixed-helicity springs doped with S-811 display a complex range of mechanical photoresponses.
Figure 6: Proof-of-principle for a mechanical device powered by light.

Similar content being viewed by others

References

  1. Feynman, R. P. in Miniaturization (ed. Gilbert, H. D.) 282–296 (Reinhold, 1961).

    Google Scholar 

  2. Drexler, K. E. Nanosystems: Molecular Machinery, Manufacturing and Computation (Wiley, 1992).

    Google Scholar 

  3. Koumura, N., Zijlstra, R. W. J., van Delden, R. A., Harada, N. & Feringa, B. L. Light-driven monodirectional molecular rotor. Nature 401, 152–155 (1999).

    Article  CAS  Google Scholar 

  4. Leigh, D. A., Wong, J. K. Y., Dehez, F. & Zerbetto, F. Unidirectional rotation in a mechanically interlocked molecular rotor. Nature 424, 174–179 (2003).

    Article  CAS  Google Scholar 

  5. Fletcher, S. P., Dumur, F., Pollard, M. M. & Feringa, B. L. A reversible, unidirectional molecular rotary motor driven by chemical energy. Science 310, 80–82 (2005).

    Article  CAS  Google Scholar 

  6. Balzani, V. et al. Autonomous artificial nanomotor powered by sunlight. Proc. Natl Acad. Sci. USA 103, 1178–1183 (2006).

    Article  CAS  Google Scholar 

  7. von Delius, M., Geertsema, E. M. & Leigh, D. A. A synthetic small molecule that can walk down a track. Nature Chem. 2, 96–101 (2010).

    Article  CAS  Google Scholar 

  8. Muraoka, T., Kinbara, K. & Aida, T. Mechanical twisting of a guest by a photoresponsive host. Nature 440, 512–515 (2006).

    Article  CAS  Google Scholar 

  9. Kudernac, T. et al. Electrically driven directional motion of a four-wheeled molecule on a metal surface. Nature 479, 208–211 (2011).

    Article  CAS  Google Scholar 

  10. Lewandowski, B. et al. Sequence-specific peptide synthesis by an artificial small-molecule machine. Science 339, 189–193 (2013).

    Article  CAS  Google Scholar 

  11. Berná, J. et al. Macroscopic transport by synthetic molecular machines. Nature Mater. 4, 704–710 (2005).

    Article  Google Scholar 

  12. Eelkema, R. et al. Nanomotor rotates microscale objects. Nature 440, 163 (2006).

    Article  CAS  Google Scholar 

  13. Yamada, M. et al. Photomobile polymer materials: towards light-driven plastic motors. Angew. Chem. Int. Ed. 47, 4986–4988 (2008).

    Article  CAS  Google Scholar 

  14. Juluri, B. K. et al. A mechanical actuator driven electrochemically by artificial molecular muscles. ACS Nano 3, 291–300 (2009).

    Article  CAS  Google Scholar 

  15. Morimoto, M. & Irie, M. A diarylethene cocrystal that converts light into mechanical work. J. Am. Chem. Soc. 132, 14172–14178 (2010).

    Article  CAS  Google Scholar 

  16. Browne, W. R. & Feringa, B. L. Making molecular machines work. Nature Nanotechnol. 1, 25–35 (2006).

    Article  CAS  Google Scholar 

  17. Ariga, K., Mori, T. & Hill, J. P. Mechanical control of nanomaterials and nanosystems. Adv. Mater. 24, 158–176 (2012).

    Article  CAS  Google Scholar 

  18. Coskun, A. et al. Great expectations: can artificial molecular machines deliver on their promise? Chem. Soc. Rev. 41, 19–30 (2012).

    Article  CAS  Google Scholar 

  19. Spinks, G. M. Deforming materials with light: photoresponsive materials muscle in on the action. Angew. Chem. Int. Ed. 51, 2285–2287 (2012).

    Article  CAS  Google Scholar 

  20. Schliwa, M. Molecular Motors (Wiley, 2003).

    Google Scholar 

  21. Mahadevan, L. & Matsudaira, P. Motility powered by supramolecular springs and ratchets. Science 288, 95–99 (2000).

    Article  CAS  Google Scholar 

  22. Armon, S., Efrati, E., Kupferman, R. & Sharon, E. Geometry and mechanics in the opening of chiral seed pods. Science 333, 1726–1730 (2011).

    Article  CAS  Google Scholar 

  23. Gerbode, S. J., Puzey, J. R., McCormick, A. G. & Mahadevan, L. How the cucumber tendril coils and overwinds. Science 337, 1087–1091 (2012).

    Article  CAS  Google Scholar 

  24. Zhu, L., Al-Kaysi, R. O. & Bardeen, C. J. Reversible photoinduced twisting of molecular crystal microribbons. J. Am. Chem. Soc. 133, 12569–12575 (2011).

    Article  CAS  Google Scholar 

  25. Kitagawa, D., Nishi, H. & Kobatake, S. Photoinduced twisting of a photochromic diarylethene crystal. Angew. Chem. Int. Ed. 52, 9320–9322 (2013).

    Article  CAS  Google Scholar 

  26. Lee, K. M. et al. Photodriven, flexural–torsional oscillation of glassy azobenzene liquid crystal polymer networks. Adv. Funct. Mater. 21, 2913–2918 (2011).

    Article  CAS  Google Scholar 

  27. Warner, M. & Terentjev, E. M. Liquid Crystal Elastomers (Oxford Univ. Press, 2003).

    Google Scholar 

  28. Natansohn, A. & Rochon, P. Photoinduced motions in azo-containing polymers. Chem. Rev. 102, 4139–4175 (2002).

    Article  CAS  Google Scholar 

  29. Yu, Y., Nakano, M. & Ikeda, T. Directed bending of a polymer film by light. Nature 425, 145 (2003).

    Article  CAS  Google Scholar 

  30. Van Oosten, C. L., Bastiaansen, C. W. M. & Broer, D. J. Printed artificial cilia from liquid-crystal network actuators modularly driven by light. Nature Mater. 8, 677–682 (2009).

    Article  CAS  Google Scholar 

  31. Van Oosten, C. L., Harris, K. D., Bastiaansen, C. W. M. & Broer, D. J. Glassy photomechanical liquid-crystal network actuators for microscale devices. Eur. Phys. J. E 23, 329–336 (2007).

    Article  CAS  Google Scholar 

  32. Sawa, Y. et al. Shape selection of twist-nematic-elastomer ribbons. Proc. Natl Acad. Sci. USA 108, 6364–6368 (2011).

    Article  CAS  Google Scholar 

  33. Sawa, Y. et al. Shape and chirality transitions in off-axis twist nematic elastomer ribbons, Phys. Rev. E 88, 022502 (2013).

    Article  Google Scholar 

  34. Teresi, L. & Varano, V. Modeling helicoid to spiral-ribbon transitions of twist-nematic elastomers. Soft Mater 9, 3081–3088 (2013).

    Article  CAS  Google Scholar 

  35. Forterre, Y. & Dumais, J. Generating helices in nature. Science 333, 1715–1716 (2011).

    Article  CAS  Google Scholar 

  36. van Oosten, C. L. et al. Bending dynamics and directionality reversal in liquid crystal network photoactuators. Macromolecules 41, 8592–8596 (2008).

    Article  CAS  Google Scholar 

  37. Harris, K. D. et al. Large amplitude light-induced motion in high elastic modulus polymer actuators. J. Mater. Chem. 15, 5043–5048 (2005).

    Article  CAS  Google Scholar 

  38. Hosono, N. et al. Large-area three-dimensional molecular ordering of a polymer brush by one-step processing. Science 330, 808–811 (2010).

    Article  CAS  Google Scholar 

  39. Mossety-Leszczak, B., Wlodarska, M., Galina, H. & Bak, G. W. Comparing liquid crystalline properties of two epoxy compounds based on the same azoxy group. Mol. Cryst. Liq. Cryst. 490, 52–66 (2008).

    Article  CAS  Google Scholar 

  40. Li, C. et al. Synthesis of a photoresponsive liquid-crystalline polymer containing azobenzene. Macromol. Rapid Commun. 30, 1928–1935 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the European Research Council (Starting Grant 307784 to N.K.), the Netherlands Organisation for Scientific Research (a Vidi Grant to N.K.) and The Royal Society UK (an International Exchanges Grant to S.P.F. & N.K.).

Author information

Authors and Affiliations

Authors

Contributions

N.K. and S.P.F. conceived the research. N.K., T.K. and J.L.M.C. guided the research. S.I. and B.M. synthesized 1. S.I., S.J.A. and B.M. carried out the experiments. All authors discussed the results and commented on the manuscript at all stages.

Corresponding authors

Correspondence to Stephen P. Fletcher or Nathalie Katsonis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1819 kb)

Supplementary Movie 1

Supplementary Movie 1 (MOV 10358 kb)

Supplementary Movie 2

Supplementary Movie 2 (MOV 23260 kb)

Supplementary Movie 3

Supplementary Movie 3 (MOV 7070 kb)

Supplementary Movie 4

Supplementary Movie 4 (WMV 28990 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iamsaard, S., Aßhoff, S., Matt, B. et al. Conversion of light into macroscopic helical motion. Nature Chem 6, 229–235 (2014). https://doi.org/10.1038/nchem.1859

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1859

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing