Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Photocurrent generation based on a light-driven proton pump in an artificial liquid membrane

Abstract

Biological light-driven proton pumps use light to move protons across a cell membrane, creating a proton gradient. Although photochromic compounds such as spiropyrans can reversibly convert between two structures with differing pKa values, spiropyrans have not been used to generate either a light-driven proton pump or an electrical current. Here, we report an artificial light-harvesting system based on a supported liquid membrane doped with a spiropyran. Irradiating the membrane with ultraviolet light induces a ring-opening reaction, converting spiropyran to merocyanine, whereas irradiation with visible light induces the reverse reaction. When the membrane is irradiated with ultraviolet and visible light on opposite sides, H+ is taken up by merocyanine, carried through the polymeric membrane and released on the other side. We show that this system produces a light-induced proton flux, an electrical current with an efficiency of 0.12%, an open-circuit voltage of 210 mV and a membrane gradient of 3.6 ΔpH units. Alternating the sides illuminated with ultraviolet and visible light generates an alternating current.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scheme demonstrating the photocurrent generation principle.
Figure 2: Light-induced voltage and current due to a light-driven proton gradient within the spiropyran-doped polypropylene membrane.
Figure 3: Experimental and theoretical photocurrent evolution characteristics.
Figure 4: Evaluation of conversion efficiency for the light-harvesting system.
Figure 5: Changing the direction of the proton gradient in the membrane.
Figure 6: The presence of an interfering ion can cause transport of the interfering ion in a direction opposite to the proton flux.

Similar content being viewed by others

References

  1. Alberts, B. et al. in Molecular Biology of the Cell (eds Anderson, M. & Granum, S.) Chs 11,14 (Garland Science, Taylor & Francis, 2007).

  2. Garg, V. et al. Conformationally constrained macrocyclic diporphyrin–fullerene artificial photosynthetic reaction center. J. Am. Chem. Soc. 133, 2944–2954 (2011).

    Article  CAS  Google Scholar 

  3. Moore, G. F. et al. A bioinspired construct that mimics the proton coupled electron transfer between P680•+ and the TyrZ–His190 pair of photosystem II. J. Am. Chem. Soc. 130, 10466–10467 (2008).

    Article  CAS  Google Scholar 

  4. Rutherford, A. W. & Moore, T. A. Mimicking photosynthesis, but just the best bits. Nature 453, 449 (2008).

    Article  CAS  Google Scholar 

  5. Moore, G. F. & Brudvig, G. W. Energy conversion in photosynthesis: a paradigm for solar fuel production. Annu. Rev. Condens. Matter Phys. 2, 303–327 (2011).

    Article  CAS  Google Scholar 

  6. Steinberg-Yfrach, G. et al. Conversion of light energy to proton potential in liposomes by artificial photosynthetic reaction centres. Nature 385, 239–241 (1997).

    Article  CAS  Google Scholar 

  7. Bennett, I. M. et al. Active transport of Ca2+ by an artificial photosynthetic membrane. Nature 420, 398–401 (2002).

    Article  CAS  Google Scholar 

  8. Tan, S. C., Crouch, L. I., Mahajan, S., Jones, M. R. & Welland, M. E. Increasing the open-circuit voltage of photoprotein-based photoelectrochemical cells by manipulation of the vacuum potential of the electrolytes. ACS Nano 6, 9103–9109 (2012).

    Article  CAS  Google Scholar 

  9. LeBlanc, G., Chen, G., Gizzie, E. A., Jennings, G. K. & Cliffel, D. E. Enhanced photocurrents of photosystem I films on p-doped silicon. Adv. Mater. 24, 5959–5962 (2012).

    Article  CAS  Google Scholar 

  10. Tan, S. C., Crouch, L. I., Jones, M. R. & Welland, M. Generation of alternating current in response to discontinuous illumination by photoelectrochemical cells based on photosynthetic proteins. Angew. Chem. Int. Ed. 51, 6667–6671 (2012).

    Article  CAS  Google Scholar 

  11. Valentin, M. D. et al. Photoinduced long-lived charge separation in a tetrathiafulvalene–porphyrin–fullerene triad detected by time-resolved electron paramagnetic resonance. J. Phys. Chem. B 109, 14401–14409 (2005).

    Article  Google Scholar 

  12. Berkovic, G., Krongauz, V. & Weiss, V. Spiropyrans and spirooxazines for memories and switches. Chem. Rev. 100, 1741–1745 (2000).

    Article  CAS  Google Scholar 

  13. Kalisky, Y., Orlowski, T. E. & Williams, D. J. Dynamics of the spiropyran–merocyanine conversion in solution. J. Phys. Chem. 87, 5333–5338 (1983).

    Article  CAS  Google Scholar 

  14. Mistlberger, G., Crespo, G. A., Xie, X. & Bakker, E. Photodynamic ion sensor systems with spiropyran: photoactivated acidity changes in plasticized poly(vinyl chloride). Chem. Commun. 48, 5662–5664 (2012).

    Article  CAS  Google Scholar 

  15. Xie, X., Mistlberger, G. & Bakker, E. Reversible photodynamic chloride-selective sensor based on photochromic spiropyran. J. Am. Chem. Soc. 134, 16929–16932 (2012).

    Article  CAS  Google Scholar 

  16. Mistlberger, G., Xie, X., Pawlak, M., Crespo, G. A. & Bakker, E. Photoresponsive ion extraction/release systems: dynamic ion optodes for calcium and sodium based on photochromic spiropyran. Anal. Chem. 85, 2983–2990 (2013).

    Article  CAS  Google Scholar 

  17. Toei, M., Saum, R. & Forgac, M. Regulation and isoform function of the V-ATPases. Biochemistry 49, 4715–4723 (2010).

    Article  CAS  Google Scholar 

  18. Turina, P., Samoray, D. & Graber, P. H+/ATP ratio of proton transport-coupled ATP synthesis and hydrolysis catalysed by CF0F1-liposomes. EMBO J. 22, 418–426 (2003).

    Article  CAS  Google Scholar 

  19. Weinberg, D. R. et al. Proton-coupled electron transfer. Chem. Rev. 112, 4016–4093 (2012).

    Article  CAS  Google Scholar 

  20. Morgan, J. E., Vakkasoglu, A. S., Lugtenburg, J., Gennis, R. B. & Maeda, A. Structural changes due to the deprotonation of the proton release group in the M-photointermediate of bacteriorhodopsin as revealed by time-resolved FTIR spectroscopy. Biochemistry 47, 11598–11605 (2008).

    Article  CAS  Google Scholar 

  21. Dencher, N. A. The five retinal-protein pigments of Halobacteria: bacteriorhodopsin, halorhodopsin, P 565, P 370, and slow-cycling rhodopsin. Photochem. Photobiol. 38, 753–768 (1983).

    Article  CAS  Google Scholar 

  22. Oesterhelt, D. Bacteriorhodopsin als Beispiel einer lichtgetriebenen Protonenpumpe. Angew. Chem. 88, 16–24 (1976).

    Article  CAS  Google Scholar 

  23. Trisll, H-W. & Montal, M. Electrical demonstration of rapid light-induced conformational changes in bacteriorhodopsin. Nature 266, 655–657 (1977).

    Article  Google Scholar 

  24. Gregg, B. A. & Hanna, M. C. Comparing organic to inorganic photovoltaic cells: theory, experiment, and simulation. J. Appl. Phys. 93, 3605–3614 (2003).

    Article  CAS  Google Scholar 

  25. He, F. & Yu, L. How far can polymer solar cells go? In need of a synergistic approach. J. Phys. Chem. Lett. 2, 3102–3113 (2011).

    Article  CAS  Google Scholar 

  26. Nazeeruddin, M. K., Baranoff, E. & Grätzel, M. Dye-sensitized solar cells: a brief overview. Solar Energy 85, 1172–1178 (2011).

    Article  CAS  Google Scholar 

  27. Levitus, M., Talhavini, M., Negri, R. M., Atvars, T. D. Z. & Aramendia, P. F. Novel kinetic model in amorphous polymers. Spiropyran–merocyanine system revisited. J. Phys. Chem. B 101, 7680–7686 (1997).

    Article  CAS  Google Scholar 

  28. Giordani, S., Cejas, M. A. & Raymo, F. M. Photoinduced proton exchange between molecular switches. Tetrahedron 60, 10973–10981 (2004).

    Article  CAS  Google Scholar 

  29. McCoy, C. P., Donnelly, L., Jones, D. S. & Gorman, S. P. Synthesis and characterisation of polymerisable photochromic spiropyrans: towards photomechanical biomaterials. Tetrahedron Lett. 48, 657–661 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support for this study from the Swiss National Science Foundation and the University of Geneva. G.M. acknowledges support by the Austrian Science Fund (J3343).

Author information

Authors and Affiliations

Authors

Contributions

X.X. and E.B. designed the research and wrote the manuscript. X.X. and G.A.C. performed the experiments. G.M. helped with designing the experiment.

Corresponding author

Correspondence to Eric Bakker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1187 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, X., Crespo, G., Mistlberger, G. et al. Photocurrent generation based on a light-driven proton pump in an artificial liquid membrane. Nature Chem 6, 202–207 (2014). https://doi.org/10.1038/nchem.1858

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1858

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing