Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Precision design of ethylene- and polar-monomer-based copolymers by organometallic-mediated radical polymerization

Subjects

Abstract

The copolymerization of ethylene with polar monomers is a major challenge when it comes to the manufacture of materials with potential for a wide range of commercial applications. In the chemical industry, free-radical polymerization is used to make a large proportion of such copolymers, but the forcing conditions result in a lack of fine control over the architecture of the products. Herein we introduce a synthetic tool, effective under mild experimental conditions, for the precision design of unprecedented ethylene- and polar-monomer-based copolymers. We demonstrate how an organocobalt species can control the growth of the copolymer chains, their composition and the monomer distribution throughout the chain. By fine tuning the ethylene pressure during polymerization and by exploiting a unique reactive mode of the end of the organometallic chain, novel block-like copolymer structures can be prepared. This highly versatile synthetic platform provides access to a diverse range of polymer materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: OMRP of ethylene with polar monomers.
Figure 2: Dependence of EVA Mn (top, filled symbols), molar-mass distribution (Mw/Mn, bottom, filled symbols) and Fethylene (open symbols) on VAc conversion for copolymerization of VAc and ethylene.
Figure 3: NMR characterization of random EVAs.
Figure 4: General strategy and SECs for the synthesis of EVA-containing diblock-like and symmetrical triblock-like copolymers at 40 °C.
Figure 5: Characterization of radical species by ESR spectroscopy.

Similar content being viewed by others

References

  1. Burkhart, R. D. & Zutty, N. L. Copolymerization studies. III. Reactivity ratios of model ethylene copolymerizations and their use in Q–e calculations. J. Polym. Sci. A 1, 1137–1145 (1963).

    CAS  Google Scholar 

  2. Mayo, F. R. & Lewis, F. M. Copolymerization. I. A basis for comparing the behavior of monomers in copolymerization; the copolymerization of styrene and methyl methacrylate. J. Am. Chem. Soc. 66, 1594–1601 (1944).

    Article  CAS  Google Scholar 

  3. Espí, E., Salmerón, A., Fontecha, A., García, Y. & Real, A. I. Plastic films for agricultural applications. J. Plast. Film Sheeting 22, 85–102 (2006).

    Article  CAS  Google Scholar 

  4. Franssen, N. M. G., Reek, J. N. H. & de Bruin, B. Synthesis of functional ‘polyolefins’: state of the art and remaining challenges. Chem. Soc. Rev. 42, 5809–5832 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Ghiass, M. & Hutchinson, R. A. Simulation of free radical high-pressure copolymerization in a multizone autoclave: model development and application. Polym. React. Eng. 11, 989–1015 (2003).

    Article  CAS  Google Scholar 

  6. Filley, J., McKinnon, J. T., Wu, D. T. & Ko, G. H. Theoretical study of ethylene–vinyl acetate free-radical copolymerization: reactivity ratios, penultimate effects, and relative rates of chain transfer to polymer. Macromolecules 35, 3731–3738 (2002).

    Article  CAS  Google Scholar 

  7. Xu, W. Z. & Charpentier, P. A. FTIR study measuring the monomer reactivity ratios for ethylene–vinyl acetate polymerization in supercritical CO2 . Ind. Eng. Chem. Res. 48, 1384–1390 (2009).

    Article  CAS  Google Scholar 

  8. Boffa, L. S. & Novak, B. M. Copolymerization of polar monomers with olefins using transition-metal complexes. Chem. Rev. 100, 1479–1493 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Nakamura, A., Ito, S. & Nozaki, K. Coordination–insertion copolymerization of fundamental polar monomers. Chem. Rev. 109, 5215–5244 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Liu, S. & Sen, A. Living/controlled copolymerization of acrylates with nonactivated alkenes. J. Polym. Sci. A 42, 6175–6192 (2004).

    Article  CAS  Google Scholar 

  11. Ito, S. et al. Coordination–insertion copolymerization of allyl monomers with ethylene. J. Am. Chem. Soc. 133, 1232–1235 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Berkefeld, A. et al. Functional group tolerant polymerization catalysis. Polym. Prepr. 51, 367 (2010).

    CAS  Google Scholar 

  13. Nakamura, A. et al. Ortho-phosphonebenzenesulfonate: a superb ligand for palladium-catalyzed coordination–insertion copolymerization of polar vinyl monomers. Acc. Chem. Res. 46, 1438–1449 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Williams, B. S., Leatherman, M. D., White, P. S. & Brookhart, M. Reactions of vinyl acetate and vinyl trifluoroacetate with cationic diimine Pd(II) and Ni(II) alkyl complexes: identification of problems connected with copolymerizations of these monomers with ethylene. J. Am. Chem. Soc. 127, 5132–5146 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Ito, S., Munakata, K., Nakamura, A. & Nozaki, K. Copolymerization of vinyl acetate with ethylene by palladium/alkylphosphine-sulfonate catalysts. J. Am. Chem. Soc. 131, 14606–14607 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Groux, L. F. et al. Insertion of acrylonitrile into palladium methyl bonds in neutral and anionic Pd(II) complexes. J. Am. Chem. Soc. 127, 1854–1869 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Wu, F., Foley, S. R., Burns, C. T. & Jordan, R. F. Acrylonitrile insertion reactions of cationic palladium alkyl complexes. J. Am. Chem. Soc. 127, 1841–1853 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Kochi, T., Noda, S., Yoshimura, K. & Nozaki, K. Formation of linear copolymers of ethylene and acrylonitrile catalyzed by phosphine sulfonate palladium complexes. J. Am. Chem. Soc. 129, 8948–8949 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Rünzi, T., Fröhlich, D. & Mecking, S. Direct synthesis of ethylene–acrylic acid copolymers by insertion polymerization. J. Am. Chem. Soc. 132, 17690–17691 (2010).

    Article  PubMed  CAS  Google Scholar 

  20. Wucher, P. et al. Controlled acrylate insertion regioselectivity in diazaphospholidine–sulfonato palladium(II) complexes. Organometallics 31, 8505–8515 (2012).

    Article  CAS  Google Scholar 

  21. Friedberger, T., Wucher, P. & Mecking, S. Mechanistic insights into polar monomer insertion polymerization from acrylamides. J. Am. Chem. Soc. 134, 1010–1018 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Leicht, H., Göttker-Schnetmann, I. & Mecking, S. Incorporation of vinyl chloride in insertion polymerization. Angew. Chem. Int. Ed. 52, 3963–3966 (2013).

    Article  CAS  Google Scholar 

  23. Szabo, M. J. et al. Polar copolymerization by a palladium–diimine-based catalyst. Influence of the catalyst charge and polar substituent on catalyst poisoning and polymerization activity. A density functional theory study. Organometallics 23, 5565–5572 (2004).

    Article  CAS  Google Scholar 

  24. Sen, A. & Borkar, S. Perspective on metal-mediated polar monomer/alkene copolymerization. J. Organomet. Chem. 692, 3291–3299 (2007).

    Article  CAS  Google Scholar 

  25. Berkefeld, A. & Mecking, S. Coordination copolymerization of polar vinyl monomers H2C=CHX. Angew. Chem. Int. Ed. 47, 2538–2542 (2008).

    Article  CAS  Google Scholar 

  26. Liu, S., Elyashiv, S. & Sen, A. Copper-mediated controlled copolymerization of methyl acrylate with 1-alkenes under mild conditions. J. Am. Chem. Soc. 123, 12738–12739 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Venkatesh, R. & Klumperman, B. Olefin copolymerization via controlled radical polymerization: copolymerization of methyl methacrylate and 1-octene. Macromolecules 37, 1226–1233 (2004).

    Article  CAS  Google Scholar 

  28. Venkatesh, R., Harrisson, S., Haddleton, D. M. & Klumperman, B. Olefin copolymerization via controlled radical polymerization: copolymerization of acrylate and 1-octene. Macromolecules 37, 4406–4416 (2004).

    Article  CAS  Google Scholar 

  29. Venkatesh, R., Vergouwen, F. & Klumperman, B. Atom transfer radical copolymerization of a-olefins with methyl acrylate: determination of activation rate parameters. Macromol. Chem. Phys. 206, 547–552 (2005).

    Article  CAS  Google Scholar 

  30. Tanaka, K. & Matyjaszewski, K. Controlled copolymerization of n-butyl acrylate with nonpolar 1-alkenes using activators regenerated by electron transfer for atom-transfer radical polymerization. Macromolecules 40, 5255–5260 (2007).

    Article  CAS  Google Scholar 

  31. Liu, S., Gu, B., Rowlands, H. A. & Sen, A. Controlled random and alternating copolymerization of methyl acrylate with 1-alkenes. Macromolecules 37, 7924–7929 (2004).

    Article  CAS  Google Scholar 

  32. Venkatesh, R., Staal, B. B. P. & Klumperman, B. Olefin copolymerization via reversible addition–fragmentation chain transfer. Chem. Commun. 1554–1555 (2004).

  33. Gu, B., Liu, S., Leber, J. D. & Sen, A. Nitroxide-mediated copolymerization of methyl acrylate with 1-alkenes and norbornenes. Macromolecules 37, 5142–5144 (2004).

    Article  CAS  Google Scholar 

  34. Mishima, E., Tamura, T. & Yamago, S. Controlled copolymerization of 1-octene and (meth)acrylates via organotellurium-mediated living radical polymerization (TERP). Macromolecules 45, 8998–9003 (2012).

    Article  CAS  Google Scholar 

  35. Bryaskova, R. et al. Copolymerization of vinyl acetate with 1-octene and ethylene by cobalt-mediated radical polymerization. J. Polym. Sci. A 45, 2532–2542 (2007).

    Article  CAS  Google Scholar 

  36. Borkar, S. & Sen, A. Controlled copolymerization of vinyl acetate with 1-alkenes and their fluoro derivatives by degenerative transfer. J. Polym. Sci. A 43, 3728–3736 (2005).

    Article  CAS  Google Scholar 

  37. Poli, R. Relationship between one-electron transition-metal reactivity and radical polymerization processes. Angew. Chem. Int. Ed. 45, 5058–5070 (2006).

    Article  CAS  Google Scholar 

  38. Debuigne, A., Poli, R., Jérôme, C., Jérôme, R. & Detrembleur, C. Overview of cobalt-mediated radical polymerization: roots, state of the art and future prospects. Prog. Polym. Sci. 34, 211–239 (2009).

    Article  CAS  Google Scholar 

  39. Hurtgen, M., Detrembleur, C., Jérôme, C. & Debuigne, A. Insight into organometallic-mediated radical polymerization. Polym. Rev. 51, 188–213 (2011).

    Article  CAS  Google Scholar 

  40. Allan, L. E. N., Perry, M. R. & Shaver, M. P. Organometallic mediated radical polymerization. Prog. Polym. Sci. 37, 127–156 (2012).

    Article  CAS  Google Scholar 

  41. Debuigne, A., Champouret, Y., Jérôme, R., Poli, R. & Detrembleur, C. Mechanistic insights into the cobalt-mediated radical polymerization (CMRP) of vinyl acetate with cobalt(III) adducts as initiators. Chem. Eur. J. 14, 4046–4059 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Gospodinova, N., Terlemezyan, L., Hihailov, M., Men, H. U. & Du, K. B. Microstructure of ethylene–(vinyl acetate) copolymers prepared by emulsion copolymerization. Eur. Polym. J. 28, 961–967 (1992).

    Article  CAS  Google Scholar 

  43. Savant, D. M., Reddy, D. V., McCord, E. F. & Rinaldi, P. L. 2D NMR studies of poly(ethylene-co-vinyl acetate-co-carbon monoxide). Macromolecules 40, 4199–4210 (2007).

    Article  CAS  Google Scholar 

  44. Ibrahim, B., Katritzky, A. R., Smith, A. & Weiss, D. E. Carbon-13 nuclear magnetic resonance spectroscopy of polymers. I. High resolution carbon-13 nuclear magnetic resonance spectroscopy. Tacticity studies on poly(vinyl acetate) and monomer distribution analysis in ethylene–vinyl acetate copolymers. J. Chem. Soc. Perkin Trans. 2 1537–1542 (1974).

  45. Sung, H. N. & Noggle, J. H. Carbon-13 NMR of poly(vinyl acetate) and ethylene–vinyl acetate copolymer. J. Polym. Sci. Polym. Phys. Ed. 19, 1593–1602 (1981).

    Article  CAS  Google Scholar 

  46. Usami, T. & Takayama, S. Fine-branching structure in high-pressure, low-density polyethylenes by 50.10 MHz carbon-13 NMR analysis. Macromolecules 17, 1756–1761 (1984).

    Article  CAS  Google Scholar 

  47. Britton, D., Heatley, F. & Lovell, P. A. Chain transfer to polymer in free-radical bulk and emulsion polymerization of vinyl acetate studied by NMR spectroscopy. Macromolecules 31, 2828–2837 (1998).

    Article  CAS  Google Scholar 

  48. McCord, E. F., Shaw, W. H. Jr & Hutchinson, R. A. short–chain branching structures in ethylene copolymers prepared by high-pressure free-radical polymerization: an NMR analysis. Macromolecules 30, 246–256 (1997).

    Article  CAS  Google Scholar 

  49. Britton, D. J., Lovell, P. A., Heatley, F. & Venkatesh, R. Chain transfer to polymer in emulsion copolymerizations. Macromol. Symp. 175, 95–104 (2001).

    Article  CAS  Google Scholar 

  50. Morin, A. N. et al. Effect of head-to-head addition in vinyl acetate controlled radical polymerization: why is Co(acac)2-mediated polymerization so much better? Macromolecules 46, 4303–4312 (2013).

    Article  CAS  Google Scholar 

  51. Debuigne, A. et al. Key role of intramolecular metal chelation and hydrogen bonding in the cobalt-mediated radical polymerization of N-vinyl amides. Chem. Eur. J. 18, 12834–12844 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Brandrup, J., Immergut, E. H. & Grulke, E. A. Polymer Handbook 4th edn (Wiley, 1999).

    Google Scholar 

  53. Minagawa, M., Kanoh, H., Tanno, S. & Satoh, M. Glass transition temperature (Tg) of free-radically prepared polyacrylonitrile by inverse gas chromatography. 2. Molecular-weight dependence of Tg of two different types of aqueous polymers. Macromol. Chem. Phys. 203, 2481–2487 (2002).

    Article  CAS  Google Scholar 

  54. Debuigne, A., Jérôme, C. & Detrembleur, C. Isoprene-assisted radical coupling of (co)polymers prepared by cobalt-mediated radical polymerization. Angew. Chem. Int. Ed. 48, 1422–1424 (2009).

    Article  CAS  Google Scholar 

  55. Debuigne, A. et al. Interpolymer radical coupling: a toolbox complementary to controlled radical polymerization. Prog. Polym. Sci. 37, 1004–1030 (2012).

    Article  CAS  Google Scholar 

  56. Debuigne, A. et al. Cobalt-mediated radical coupling (CMRC): an unusual route to midchain-functionalized symmetrical macromolecules. Chem. Eur. J. 16, 1799–1811 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Poli, R. Radical Coordination chemistry and its relevance to metal-mediated radical polymerization. Eur. J. Inorg. Chem. 1513–1530 (2011).

    Article  CAS  Google Scholar 

  58. Leblanc, A. et al. Homo- and copolymerizations of (meth)acrylates with olefins (styrene, ethylene) using neutral nickel complexes: a dual radical/catalytic pathway. Macromolecules 44, 3293–3301 (2011).

    Article  CAS  Google Scholar 

  59. Mori, Y., Sumi, H., Hirabayashi, T., Inai, Y. & Yokota, K. Synthesis of sequence-ordered copolymers. 4. Glass transition and melting temperatures of sequence-ordered and unordered ethylene–vinyl alcohol and ethylene–vinyl acetate copolymers. Macromolecules 27, 1051–1056 (1994).

    Article  CAS  Google Scholar 

  60. Qi, X-J., Li, Z., Fu, Y., Guo, Q-X. & Liu, L. Anti-spin-delocalization effect in Co–C bond dissociation enthalpies. Organometallics 27, 2688–2698 (2008).

    Article  CAS  Google Scholar 

  61. Van, C. K., Van, S. V., Vansteenkiste, P., Reyniers, M-F. & Waroquier, M. Ab initio study of free-radical polymerization: polyethylene propagation kinetics. ChemPhysChem 7, 131–140 (2006).

    Article  CAS  Google Scholar 

  62. Aggarwal, S. L. & Sweeting, O. J. Polyethylene: preparation, structure, and properties. Chem. Rev. 57, 665–742 (1957).

    Article  CAS  Google Scholar 

  63. Grau, E., Broyer, J-P., Boisson, C., Spitz, R. & Monteil, V. Free ethylene radical polymerization under mild conditions: the impact of the solvent. Macromolecules 42, 7279–7281 (2009).

    Article  CAS  Google Scholar 

  64. Grau, E., Broyer, J-P., Boisson, C., Spitz, R. & Monteil, V. Unusual activation by solvent of the ethylene free radical polymerization. Polym. Chem. 2, 2328–2333 (2011).

    Article  CAS  Google Scholar 

  65. Boaen, N. K. & Hillmyer, M. A. Post-polymerization functionalization of polyolefins. Chem. Soc. Rev. 34, 267–275 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Prinos, J., Bikiaris, D., Theologidis, S. & Panayiotou, C. Preparation and characterization of LDPE/starch blends containing ethylene/vinyl acetate copolymer as compatibilizer. Polym. Eng. Sci. 38, 954–964 (1998).

    Article  CAS  Google Scholar 

  67. Debuigne, A., Caille, J-R. & Jérôme, R. Synthesis of end-functional poly(vinyl acetate) by cobalt-mediated radical polymerization. Macromolecules 38, 5452–5458 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Fonds National de la Recherche Scientifique (FRS-FNRS) and to the Belgian Science Policy for financial support within in the frame of the Interuniversity Attraction Poles Programme (PAI VI/27)–Functional Supramolecular Systems for financial support. A.D. and A.K. are grateful for funding from the University of Liege via the Fonds Speciaux pour la Recherche – Credits de Demarrage. C.D. thanks the FRS-FNRS for funding the MIS research project ‘Organocobalt as a clean source of radicals’. A.D. and C.D. are FRS-FNRS Associate Researcher and Research Director, respectively. The authors also thank G. Cartigny, C. Dannemark, C. Malherbe, C. Damblon and P. De Tullio for their skilful assistance. The authors also thank I. German for his help in editing the manuscript, and C. Lepot for providing a nice proposal for potential cover material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Detrembleur.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2441 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kermagoret, A., Debuigne, A., Jérôme, C. et al. Precision design of ethylene- and polar-monomer-based copolymers by organometallic-mediated radical polymerization. Nature Chem 6, 179–187 (2014). https://doi.org/10.1038/nchem.1850

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1850

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing